Solve for E
E=-\frac{y}{27}+\frac{4}{9}
Solve for y
y=12-27E
Graph
Share
Copied to clipboard
18E=\frac{40}{3}-\frac{16}{3}+\frac{4}{3}y-2y
To find the opposite of \frac{16}{3}-\frac{4}{3}y, find the opposite of each term.
18E=8+\frac{4}{3}y-2y
Subtract \frac{16}{3} from \frac{40}{3} to get 8.
18E=8-\frac{2}{3}y
Combine \frac{4}{3}y and -2y to get -\frac{2}{3}y.
18E=-\frac{2y}{3}+8
The equation is in standard form.
\frac{18E}{18}=\frac{-\frac{2y}{3}+8}{18}
Divide both sides by 18.
E=\frac{-\frac{2y}{3}+8}{18}
Dividing by 18 undoes the multiplication by 18.
E=-\frac{y}{27}+\frac{4}{9}
Divide 8-\frac{2y}{3} by 18.
18E=\frac{40}{3}-\frac{16}{3}+\frac{4}{3}y-2y
To find the opposite of \frac{16}{3}-\frac{4}{3}y, find the opposite of each term.
18E=8+\frac{4}{3}y-2y
Subtract \frac{16}{3} from \frac{40}{3} to get 8.
18E=8-\frac{2}{3}y
Combine \frac{4}{3}y and -2y to get -\frac{2}{3}y.
8-\frac{2}{3}y=18E
Swap sides so that all variable terms are on the left hand side.
-\frac{2}{3}y=18E-8
Subtract 8 from both sides.
\frac{-\frac{2}{3}y}{-\frac{2}{3}}=\frac{18E-8}{-\frac{2}{3}}
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{18E-8}{-\frac{2}{3}}
Dividing by -\frac{2}{3} undoes the multiplication by -\frac{2}{3}.
y=12-27E
Divide 18E-8 by -\frac{2}{3} by multiplying 18E-8 by the reciprocal of -\frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}