Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-t^{2}=-18
Subtract 18 from both sides. Anything subtracted from zero gives its negation.
t^{2}=\frac{-18}{-1}
Divide both sides by -1.
t^{2}=18
Fraction \frac{-18}{-1} can be simplified to 18 by removing the negative sign from both the numerator and the denominator.
t=3\sqrt{2} t=-3\sqrt{2}
Take the square root of both sides of the equation.
-t^{2}+18=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 18}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-1\right)\times 18}}{2\left(-1\right)}
Square 0.
t=\frac{0±\sqrt{4\times 18}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{0±\sqrt{72}}{2\left(-1\right)}
Multiply 4 times 18.
t=\frac{0±6\sqrt{2}}{2\left(-1\right)}
Take the square root of 72.
t=\frac{0±6\sqrt{2}}{-2}
Multiply 2 times -1.
t=-3\sqrt{2}
Now solve the equation t=\frac{0±6\sqrt{2}}{-2} when ± is plus.
t=3\sqrt{2}
Now solve the equation t=\frac{0±6\sqrt{2}}{-2} when ± is minus.
t=-3\sqrt{2} t=3\sqrt{2}
The equation is now solved.