Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-24x+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 18}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 18}}{2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-72}}{2}
Multiply -4 times 18.
x=\frac{-\left(-24\right)±\sqrt{504}}{2}
Add 576 to -72.
x=\frac{-\left(-24\right)±6\sqrt{14}}{2}
Take the square root of 504.
x=\frac{24±6\sqrt{14}}{2}
The opposite of -24 is 24.
x=\frac{6\sqrt{14}+24}{2}
Now solve the equation x=\frac{24±6\sqrt{14}}{2} when ± is plus. Add 24 to 6\sqrt{14}.
x=3\sqrt{14}+12
Divide 24+6\sqrt{14} by 2.
x=\frac{24-6\sqrt{14}}{2}
Now solve the equation x=\frac{24±6\sqrt{14}}{2} when ± is minus. Subtract 6\sqrt{14} from 24.
x=12-3\sqrt{14}
Divide 24-6\sqrt{14} by 2.
x^{2}-24x+18=\left(x-\left(3\sqrt{14}+12\right)\right)\left(x-\left(12-3\sqrt{14}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 12+3\sqrt{14} for x_{1} and 12-3\sqrt{14} for x_{2}.