Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=\frac{5}{6}\approx 0.833333333
Graph
Share
Copied to clipboard
a+b=-9 ab=18\left(-5\right)=-90
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 18x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Calculate the sum for each pair.
a=-15 b=6
The solution is the pair that gives sum -9.
\left(18x^{2}-15x\right)+\left(6x-5\right)
Rewrite 18x^{2}-9x-5 as \left(18x^{2}-15x\right)+\left(6x-5\right).
3x\left(6x-5\right)+6x-5
Factor out 3x in 18x^{2}-15x.
\left(6x-5\right)\left(3x+1\right)
Factor out common term 6x-5 by using distributive property.
x=\frac{5}{6} x=-\frac{1}{3}
To find equation solutions, solve 6x-5=0 and 3x+1=0.
18x^{2}-9x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18\left(-5\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -9 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 18\left(-5\right)}}{2\times 18}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-72\left(-5\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-9\right)±\sqrt{81+360}}{2\times 18}
Multiply -72 times -5.
x=\frac{-\left(-9\right)±\sqrt{441}}{2\times 18}
Add 81 to 360.
x=\frac{-\left(-9\right)±21}{2\times 18}
Take the square root of 441.
x=\frac{9±21}{2\times 18}
The opposite of -9 is 9.
x=\frac{9±21}{36}
Multiply 2 times 18.
x=\frac{30}{36}
Now solve the equation x=\frac{9±21}{36} when ± is plus. Add 9 to 21.
x=\frac{5}{6}
Reduce the fraction \frac{30}{36} to lowest terms by extracting and canceling out 6.
x=-\frac{12}{36}
Now solve the equation x=\frac{9±21}{36} when ± is minus. Subtract 21 from 9.
x=-\frac{1}{3}
Reduce the fraction \frac{-12}{36} to lowest terms by extracting and canceling out 12.
x=\frac{5}{6} x=-\frac{1}{3}
The equation is now solved.
18x^{2}-9x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
18x^{2}-9x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
18x^{2}-9x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
18x^{2}-9x=5
Subtract -5 from 0.
\frac{18x^{2}-9x}{18}=\frac{5}{18}
Divide both sides by 18.
x^{2}+\left(-\frac{9}{18}\right)x=\frac{5}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}-\frac{1}{2}x=\frac{5}{18}
Reduce the fraction \frac{-9}{18} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{5}{18}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{18}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{144}
Add \frac{5}{18} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{144}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{144}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{7}{12} x-\frac{1}{4}=-\frac{7}{12}
Simplify.
x=\frac{5}{6} x=-\frac{1}{3}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}