Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x^{2}+33x=180
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
18x^{2}+33x-180=180-180
Subtract 180 from both sides of the equation.
18x^{2}+33x-180=0
Subtracting 180 from itself leaves 0.
x=\frac{-33±\sqrt{33^{2}-4\times 18\left(-180\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 33 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\times 18\left(-180\right)}}{2\times 18}
Square 33.
x=\frac{-33±\sqrt{1089-72\left(-180\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-33±\sqrt{1089+12960}}{2\times 18}
Multiply -72 times -180.
x=\frac{-33±\sqrt{14049}}{2\times 18}
Add 1089 to 12960.
x=\frac{-33±3\sqrt{1561}}{2\times 18}
Take the square root of 14049.
x=\frac{-33±3\sqrt{1561}}{36}
Multiply 2 times 18.
x=\frac{3\sqrt{1561}-33}{36}
Now solve the equation x=\frac{-33±3\sqrt{1561}}{36} when ± is plus. Add -33 to 3\sqrt{1561}.
x=\frac{\sqrt{1561}-11}{12}
Divide -33+3\sqrt{1561} by 36.
x=\frac{-3\sqrt{1561}-33}{36}
Now solve the equation x=\frac{-33±3\sqrt{1561}}{36} when ± is minus. Subtract 3\sqrt{1561} from -33.
x=\frac{-\sqrt{1561}-11}{12}
Divide -33-3\sqrt{1561} by 36.
x=\frac{\sqrt{1561}-11}{12} x=\frac{-\sqrt{1561}-11}{12}
The equation is now solved.
18x^{2}+33x=180
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{18x^{2}+33x}{18}=\frac{180}{18}
Divide both sides by 18.
x^{2}+\frac{33}{18}x=\frac{180}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{11}{6}x=\frac{180}{18}
Reduce the fraction \frac{33}{18} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{11}{6}x=10
Divide 180 by 18.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=10+\left(\frac{11}{12}\right)^{2}
Divide \frac{11}{6}, the coefficient of the x term, by 2 to get \frac{11}{12}. Then add the square of \frac{11}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{6}x+\frac{121}{144}=10+\frac{121}{144}
Square \frac{11}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{1561}{144}
Add 10 to \frac{121}{144}.
\left(x+\frac{11}{12}\right)^{2}=\frac{1561}{144}
Factor x^{2}+\frac{11}{6}x+\frac{121}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{1561}{144}}
Take the square root of both sides of the equation.
x+\frac{11}{12}=\frac{\sqrt{1561}}{12} x+\frac{11}{12}=-\frac{\sqrt{1561}}{12}
Simplify.
x=\frac{\sqrt{1561}-11}{12} x=\frac{-\sqrt{1561}-11}{12}
Subtract \frac{11}{12} from both sides of the equation.