Solve for x
x = \frac{\sqrt{5} + 324}{6} \approx 54.372677996
Graph
Share
Copied to clipboard
324-5x+\sqrt{5}=x
Calculate 18 to the power of 2 and get 324.
324-5x+\sqrt{5}-x=0
Subtract x from both sides.
324-6x+\sqrt{5}=0
Combine -5x and -x to get -6x.
-6x+\sqrt{5}=-324
Subtract 324 from both sides. Anything subtracted from zero gives its negation.
-6x=-324-\sqrt{5}
Subtract \sqrt{5} from both sides.
-6x=-\sqrt{5}-324
The equation is in standard form.
\frac{-6x}{-6}=\frac{-\sqrt{5}-324}{-6}
Divide both sides by -6.
x=\frac{-\sqrt{5}-324}{-6}
Dividing by -6 undoes the multiplication by -6.
x=\frac{\sqrt{5}}{6}+54
Divide -324-\sqrt{5} by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}