Solve for x
x=7+\frac{18}{\lambda }
\lambda \neq 0
Solve for λ
\lambda =-\frac{18}{7-x}
x\neq 7
Graph
Share
Copied to clipboard
18=6\lambda +\lambda x-13\lambda
Use the distributive property to multiply \lambda by x-13.
18=-7\lambda +\lambda x
Combine 6\lambda and -13\lambda to get -7\lambda .
-7\lambda +\lambda x=18
Swap sides so that all variable terms are on the left hand side.
\lambda x=18+7\lambda
Add 7\lambda to both sides.
\lambda x=7\lambda +18
The equation is in standard form.
\frac{\lambda x}{\lambda }=\frac{7\lambda +18}{\lambda }
Divide both sides by \lambda .
x=\frac{7\lambda +18}{\lambda }
Dividing by \lambda undoes the multiplication by \lambda .
x=7+\frac{18}{\lambda }
Divide 18+7\lambda by \lambda .
18=6\lambda +\lambda x-13\lambda
Use the distributive property to multiply \lambda by x-13.
18=-7\lambda +\lambda x
Combine 6\lambda and -13\lambda to get -7\lambda .
-7\lambda +\lambda x=18
Swap sides so that all variable terms are on the left hand side.
\left(-7+x\right)\lambda =18
Combine all terms containing \lambda .
\left(x-7\right)\lambda =18
The equation is in standard form.
\frac{\left(x-7\right)\lambda }{x-7}=\frac{18}{x-7}
Divide both sides by x-7.
\lambda =\frac{18}{x-7}
Dividing by x-7 undoes the multiplication by x-7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}