Solve for x
x=3
Graph
Share
Copied to clipboard
18-15x=-\sqrt{27x}\sqrt{3x}
Subtract 15x from both sides of the equation.
-15x+18=-\sqrt{3x}\sqrt{27x}
Reorder the terms.
\left(-15x+18\right)^{2}=\left(-\sqrt{3x}\sqrt{27x}\right)^{2}
Square both sides of the equation.
225x^{2}-540x+324=\left(-\sqrt{3x}\sqrt{27x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-15x+18\right)^{2}.
225x^{2}-540x+324=\left(-1\right)^{2}\left(\sqrt{3x}\right)^{2}\left(\sqrt{27x}\right)^{2}
Expand \left(-\sqrt{3x}\sqrt{27x}\right)^{2}.
225x^{2}-540x+324=1\left(\sqrt{3x}\right)^{2}\left(\sqrt{27x}\right)^{2}
Calculate -1 to the power of 2 and get 1.
225x^{2}-540x+324=1\times 3x\left(\sqrt{27x}\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
225x^{2}-540x+324=3x\left(\sqrt{27x}\right)^{2}
Multiply 1 and 3 to get 3.
225x^{2}-540x+324=3x\times 27x
Calculate \sqrt{27x} to the power of 2 and get 27x.
225x^{2}-540x+324=81xx
Multiply 3 and 27 to get 81.
225x^{2}-540x+324=81x^{2}
Multiply x and x to get x^{2}.
225x^{2}-540x+324-81x^{2}=0
Subtract 81x^{2} from both sides.
144x^{2}-540x+324=0
Combine 225x^{2} and -81x^{2} to get 144x^{2}.
x=\frac{-\left(-540\right)±\sqrt{\left(-540\right)^{2}-4\times 144\times 324}}{2\times 144}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 144 for a, -540 for b, and 324 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-540\right)±\sqrt{291600-4\times 144\times 324}}{2\times 144}
Square -540.
x=\frac{-\left(-540\right)±\sqrt{291600-576\times 324}}{2\times 144}
Multiply -4 times 144.
x=\frac{-\left(-540\right)±\sqrt{291600-186624}}{2\times 144}
Multiply -576 times 324.
x=\frac{-\left(-540\right)±\sqrt{104976}}{2\times 144}
Add 291600 to -186624.
x=\frac{-\left(-540\right)±324}{2\times 144}
Take the square root of 104976.
x=\frac{540±324}{2\times 144}
The opposite of -540 is 540.
x=\frac{540±324}{288}
Multiply 2 times 144.
x=\frac{864}{288}
Now solve the equation x=\frac{540±324}{288} when ± is plus. Add 540 to 324.
x=3
Divide 864 by 288.
x=\frac{216}{288}
Now solve the equation x=\frac{540±324}{288} when ± is minus. Subtract 324 from 540.
x=\frac{3}{4}
Reduce the fraction \frac{216}{288} to lowest terms by extracting and canceling out 72.
x=3 x=\frac{3}{4}
The equation is now solved.
18=15\times 3-\sqrt{27\times 3}\sqrt{3\times 3}
Substitute 3 for x in the equation 18=15x-\sqrt{27x}\sqrt{3x}.
18=18
Simplify. The value x=3 satisfies the equation.
18=15\times \frac{3}{4}-\sqrt{27\times \frac{3}{4}}\sqrt{3\times \frac{3}{4}}
Substitute \frac{3}{4} for x in the equation 18=15x-\sqrt{27x}\sqrt{3x}.
18=\frac{9}{2}
Simplify. The value x=\frac{3}{4} does not satisfy the equation.
x=3
Equation -15x+18=-\sqrt{3x}\sqrt{27x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}