Solve for x (complex solution)
x=\sqrt{970}-30\approx 1.144823005
x=-\left(\sqrt{970}+30\right)\approx -61.144823005
Solve for x
x=\sqrt{970}-30\approx 1.144823005
x=-\sqrt{970}-30\approx -61.144823005
Graph
Share
Copied to clipboard
-\frac{1}{5}x^{2}-12x+32=18
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{5}x^{2}-12x+32-18=0
Subtract 18 from both sides.
-\frac{1}{5}x^{2}-12x+14=0
Subtract 18 from 32 to get 14.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{5} for a, -12 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{4}{5}\times 14}}{2\left(-\frac{1}{5}\right)}
Multiply -4 times -\frac{1}{5}.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{56}{5}}}{2\left(-\frac{1}{5}\right)}
Multiply \frac{4}{5} times 14.
x=\frac{-\left(-12\right)±\sqrt{\frac{776}{5}}}{2\left(-\frac{1}{5}\right)}
Add 144 to \frac{56}{5}.
x=\frac{-\left(-12\right)±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
Take the square root of \frac{776}{5}.
x=\frac{12±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
The opposite of -12 is 12.
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}}
Multiply 2 times -\frac{1}{5}.
x=\frac{\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Now solve the equation x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} when ± is plus. Add 12 to \frac{2\sqrt{970}}{5}.
x=-\left(\sqrt{970}+30\right)
Divide 12+\frac{2\sqrt{970}}{5} by -\frac{2}{5} by multiplying 12+\frac{2\sqrt{970}}{5} by the reciprocal of -\frac{2}{5}.
x=\frac{-\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Now solve the equation x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} when ± is minus. Subtract \frac{2\sqrt{970}}{5} from 12.
x=\sqrt{970}-30
Divide 12-\frac{2\sqrt{970}}{5} by -\frac{2}{5} by multiplying 12-\frac{2\sqrt{970}}{5} by the reciprocal of -\frac{2}{5}.
x=-\left(\sqrt{970}+30\right) x=\sqrt{970}-30
The equation is now solved.
-\frac{1}{5}x^{2}-12x+32=18
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{5}x^{2}-12x=18-32
Subtract 32 from both sides.
-\frac{1}{5}x^{2}-12x=-14
Subtract 32 from 18 to get -14.
\frac{-\frac{1}{5}x^{2}-12x}{-\frac{1}{5}}=-\frac{14}{-\frac{1}{5}}
Multiply both sides by -5.
x^{2}+\left(-\frac{12}{-\frac{1}{5}}\right)x=-\frac{14}{-\frac{1}{5}}
Dividing by -\frac{1}{5} undoes the multiplication by -\frac{1}{5}.
x^{2}+60x=-\frac{14}{-\frac{1}{5}}
Divide -12 by -\frac{1}{5} by multiplying -12 by the reciprocal of -\frac{1}{5}.
x^{2}+60x=70
Divide -14 by -\frac{1}{5} by multiplying -14 by the reciprocal of -\frac{1}{5}.
x^{2}+60x+30^{2}=70+30^{2}
Divide 60, the coefficient of the x term, by 2 to get 30. Then add the square of 30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+60x+900=70+900
Square 30.
x^{2}+60x+900=970
Add 70 to 900.
\left(x+30\right)^{2}=970
Factor x^{2}+60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{970}
Take the square root of both sides of the equation.
x+30=\sqrt{970} x+30=-\sqrt{970}
Simplify.
x=\sqrt{970}-30 x=-\sqrt{970}-30
Subtract 30 from both sides of the equation.
-\frac{1}{5}x^{2}-12x+32=18
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{5}x^{2}-12x+32-18=0
Subtract 18 from both sides.
-\frac{1}{5}x^{2}-12x+14=0
Subtract 18 from 32 to get 14.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{5} for a, -12 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{4}{5}\times 14}}{2\left(-\frac{1}{5}\right)}
Multiply -4 times -\frac{1}{5}.
x=\frac{-\left(-12\right)±\sqrt{144+\frac{56}{5}}}{2\left(-\frac{1}{5}\right)}
Multiply \frac{4}{5} times 14.
x=\frac{-\left(-12\right)±\sqrt{\frac{776}{5}}}{2\left(-\frac{1}{5}\right)}
Add 144 to \frac{56}{5}.
x=\frac{-\left(-12\right)±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
Take the square root of \frac{776}{5}.
x=\frac{12±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
The opposite of -12 is 12.
x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}}
Multiply 2 times -\frac{1}{5}.
x=\frac{\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Now solve the equation x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} when ± is plus. Add 12 to \frac{2\sqrt{970}}{5}.
x=-\left(\sqrt{970}+30\right)
Divide 12+\frac{2\sqrt{970}}{5} by -\frac{2}{5} by multiplying 12+\frac{2\sqrt{970}}{5} by the reciprocal of -\frac{2}{5}.
x=\frac{-\frac{2\sqrt{970}}{5}+12}{-\frac{2}{5}}
Now solve the equation x=\frac{12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} when ± is minus. Subtract \frac{2\sqrt{970}}{5} from 12.
x=\sqrt{970}-30
Divide 12-\frac{2\sqrt{970}}{5} by -\frac{2}{5} by multiplying 12-\frac{2\sqrt{970}}{5} by the reciprocal of -\frac{2}{5}.
x=-\left(\sqrt{970}+30\right) x=\sqrt{970}-30
The equation is now solved.
-\frac{1}{5}x^{2}-12x+32=18
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{5}x^{2}-12x=18-32
Subtract 32 from both sides.
-\frac{1}{5}x^{2}-12x=-14
Subtract 32 from 18 to get -14.
\frac{-\frac{1}{5}x^{2}-12x}{-\frac{1}{5}}=-\frac{14}{-\frac{1}{5}}
Multiply both sides by -5.
x^{2}+\left(-\frac{12}{-\frac{1}{5}}\right)x=-\frac{14}{-\frac{1}{5}}
Dividing by -\frac{1}{5} undoes the multiplication by -\frac{1}{5}.
x^{2}+60x=-\frac{14}{-\frac{1}{5}}
Divide -12 by -\frac{1}{5} by multiplying -12 by the reciprocal of -\frac{1}{5}.
x^{2}+60x=70
Divide -14 by -\frac{1}{5} by multiplying -14 by the reciprocal of -\frac{1}{5}.
x^{2}+60x+30^{2}=70+30^{2}
Divide 60, the coefficient of the x term, by 2 to get 30. Then add the square of 30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+60x+900=70+900
Square 30.
x^{2}+60x+900=970
Add 70 to 900.
\left(x+30\right)^{2}=970
Factor x^{2}+60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{970}
Take the square root of both sides of the equation.
x+30=\sqrt{970} x+30=-\sqrt{970}
Simplify.
x=\sqrt{970}-30 x=-\sqrt{970}-30
Subtract 30 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}