Solve for f
f=18t\left(t+1\right)^{3}
t\neq -1\text{ and }t\neq 0
Share
Copied to clipboard
\left(t+1\right)^{3}\times 18t=f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f\left(t+1\right)^{3}, the least common multiple of f,\left(t+1\right)^{3}.
\left(t^{3}+3t^{2}+3t+1\right)\times 18t=f
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(t+1\right)^{3}.
\left(18t^{3}+54t^{2}+54t+18\right)t=f
Use the distributive property to multiply t^{3}+3t^{2}+3t+1 by 18.
18t^{4}+54t^{3}+54t^{2}+18t=f
Use the distributive property to multiply 18t^{3}+54t^{2}+54t+18 by t.
f=18t^{4}+54t^{3}+54t^{2}+18t
Swap sides so that all variable terms are on the left hand side.
f=18t^{4}+54t^{3}+54t^{2}+18t\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}