Evaluate
\frac{1931}{10}=193.1
Factor
\frac{1931}{2 \cdot 5} = 193\frac{1}{10} = 193.1
Share
Copied to clipboard
\frac{18}{-20}-2\left(26-123\right)
Subtract 32 from 12 to get -20.
-\frac{9}{10}-2\left(26-123\right)
Reduce the fraction \frac{18}{-20} to lowest terms by extracting and canceling out 2.
-\frac{9}{10}-2\left(-97\right)
Subtract 123 from 26 to get -97.
-\frac{9}{10}-\left(-194\right)
Multiply 2 and -97 to get -194.
-\frac{9}{10}+194
The opposite of -194 is 194.
-\frac{9}{10}+\frac{1940}{10}
Convert 194 to fraction \frac{1940}{10}.
\frac{-9+1940}{10}
Since -\frac{9}{10} and \frac{1940}{10} have the same denominator, add them by adding their numerators.
\frac{1931}{10}
Add -9 and 1940 to get 1931.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}