Factor
-4\left(y-\frac{3-3\sqrt{33}}{8}\right)\left(y-\frac{3\sqrt{33}+3}{8}\right)
Evaluate
18+3y-4y^{2}
Graph
Share
Copied to clipboard
-4y^{2}+3y+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 18}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-3±\sqrt{9-4\left(-4\right)\times 18}}{2\left(-4\right)}
Square 3.
y=\frac{-3±\sqrt{9+16\times 18}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-3±\sqrt{9+288}}{2\left(-4\right)}
Multiply 16 times 18.
y=\frac{-3±\sqrt{297}}{2\left(-4\right)}
Add 9 to 288.
y=\frac{-3±3\sqrt{33}}{2\left(-4\right)}
Take the square root of 297.
y=\frac{-3±3\sqrt{33}}{-8}
Multiply 2 times -4.
y=\frac{3\sqrt{33}-3}{-8}
Now solve the equation y=\frac{-3±3\sqrt{33}}{-8} when ± is plus. Add -3 to 3\sqrt{33}.
y=\frac{3-3\sqrt{33}}{8}
Divide -3+3\sqrt{33} by -8.
y=\frac{-3\sqrt{33}-3}{-8}
Now solve the equation y=\frac{-3±3\sqrt{33}}{-8} when ± is minus. Subtract 3\sqrt{33} from -3.
y=\frac{3\sqrt{33}+3}{8}
Divide -3-3\sqrt{33} by -8.
-4y^{2}+3y+18=-4\left(y-\frac{3-3\sqrt{33}}{8}\right)\left(y-\frac{3\sqrt{33}+3}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3-3\sqrt{33}}{8} for x_{1} and \frac{3+3\sqrt{33}}{8} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}