Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4y^{2}+3y+18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 18}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-3±\sqrt{9-4\left(-4\right)\times 18}}{2\left(-4\right)}
Square 3.
y=\frac{-3±\sqrt{9+16\times 18}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-3±\sqrt{9+288}}{2\left(-4\right)}
Multiply 16 times 18.
y=\frac{-3±\sqrt{297}}{2\left(-4\right)}
Add 9 to 288.
y=\frac{-3±3\sqrt{33}}{2\left(-4\right)}
Take the square root of 297.
y=\frac{-3±3\sqrt{33}}{-8}
Multiply 2 times -4.
y=\frac{3\sqrt{33}-3}{-8}
Now solve the equation y=\frac{-3±3\sqrt{33}}{-8} when ± is plus. Add -3 to 3\sqrt{33}.
y=\frac{3-3\sqrt{33}}{8}
Divide -3+3\sqrt{33} by -8.
y=\frac{-3\sqrt{33}-3}{-8}
Now solve the equation y=\frac{-3±3\sqrt{33}}{-8} when ± is minus. Subtract 3\sqrt{33} from -3.
y=\frac{3\sqrt{33}+3}{8}
Divide -3-3\sqrt{33} by -8.
-4y^{2}+3y+18=-4\left(y-\frac{3-3\sqrt{33}}{8}\right)\left(y-\frac{3\sqrt{33}+3}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3-3\sqrt{33}}{8} for x_{1} and \frac{3+3\sqrt{33}}{8} for x_{2}.