Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18+9-6x+x^{2}+\left(x^{2}-2x-3\right)^{2}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
27-6x+x^{2}+\left(x^{2}-2x-3\right)^{2}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Add 18 and 9 to get 27.
27-6x+x^{2}+x^{4}-4x^{3}-2x^{2}+12x+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Square x^{2}-2x-3.
27-6x-x^{2}+x^{4}-4x^{3}+12x+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Combine x^{2} and -2x^{2} to get -x^{2}.
27+6x-x^{2}+x^{4}-4x^{3}+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Combine -6x and 12x to get 6x.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Add 27 and 9 to get 36.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}-2x\right)^{2}
Add -3 and 3 to get 0.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}\right)^{2}-4x^{2}x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2x\right)^{2}.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+x^{4}-4x^{2}x+4x^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+x^{4}-4x^{3}+4x^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
36+6x-x^{2}+x^{4}-4x^{3}=5x^{2}+x^{4}-4x^{3}
Combine x^{2} and 4x^{2} to get 5x^{2}.
36+6x-x^{2}+x^{4}-4x^{3}-5x^{2}=x^{4}-4x^{3}
Subtract 5x^{2} from both sides.
36+6x-6x^{2}+x^{4}-4x^{3}=x^{4}-4x^{3}
Combine -x^{2} and -5x^{2} to get -6x^{2}.
36+6x-6x^{2}+x^{4}-4x^{3}-x^{4}=-4x^{3}
Subtract x^{4} from both sides.
36+6x-6x^{2}-4x^{3}=-4x^{3}
Combine x^{4} and -x^{4} to get 0.
36+6x-6x^{2}-4x^{3}+4x^{3}=0
Add 4x^{3} to both sides.
36+6x-6x^{2}=0
Combine -4x^{3} and 4x^{3} to get 0.
6+x-x^{2}=0
Divide both sides by 6.
-x^{2}+x+6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=3 b=-2
The solution is the pair that gives sum 1.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
Rewrite -x^{2}+x+6 as \left(-x^{2}+3x\right)+\left(-2x+6\right).
-x\left(x-3\right)-2\left(x-3\right)
Factor out -x in the first and -2 in the second group.
\left(x-3\right)\left(-x-2\right)
Factor out common term x-3 by using distributive property.
x=3 x=-2
To find equation solutions, solve x-3=0 and -x-2=0.
18+9-6x+x^{2}+\left(x^{2}-2x-3\right)^{2}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
27-6x+x^{2}+\left(x^{2}-2x-3\right)^{2}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Add 18 and 9 to get 27.
27-6x+x^{2}+x^{4}-4x^{3}-2x^{2}+12x+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Square x^{2}-2x-3.
27-6x-x^{2}+x^{4}-4x^{3}+12x+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Combine x^{2} and -2x^{2} to get -x^{2}.
27+6x-x^{2}+x^{4}-4x^{3}+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Combine -6x and 12x to get 6x.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Add 27 and 9 to get 36.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}-2x\right)^{2}
Add -3 and 3 to get 0.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}\right)^{2}-4x^{2}x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2x\right)^{2}.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+x^{4}-4x^{2}x+4x^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+x^{4}-4x^{3}+4x^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
36+6x-x^{2}+x^{4}-4x^{3}=5x^{2}+x^{4}-4x^{3}
Combine x^{2} and 4x^{2} to get 5x^{2}.
36+6x-x^{2}+x^{4}-4x^{3}-5x^{2}=x^{4}-4x^{3}
Subtract 5x^{2} from both sides.
36+6x-6x^{2}+x^{4}-4x^{3}=x^{4}-4x^{3}
Combine -x^{2} and -5x^{2} to get -6x^{2}.
36+6x-6x^{2}+x^{4}-4x^{3}-x^{4}=-4x^{3}
Subtract x^{4} from both sides.
36+6x-6x^{2}-4x^{3}=-4x^{3}
Combine x^{4} and -x^{4} to get 0.
36+6x-6x^{2}-4x^{3}+4x^{3}=0
Add 4x^{3} to both sides.
36+6x-6x^{2}=0
Combine -4x^{3} and 4x^{3} to get 0.
-6x^{2}+6x+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-6\right)\times 36}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 6 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-6\right)\times 36}}{2\left(-6\right)}
Square 6.
x=\frac{-6±\sqrt{36+24\times 36}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-6±\sqrt{36+864}}{2\left(-6\right)}
Multiply 24 times 36.
x=\frac{-6±\sqrt{900}}{2\left(-6\right)}
Add 36 to 864.
x=\frac{-6±30}{2\left(-6\right)}
Take the square root of 900.
x=\frac{-6±30}{-12}
Multiply 2 times -6.
x=\frac{24}{-12}
Now solve the equation x=\frac{-6±30}{-12} when ± is plus. Add -6 to 30.
x=-2
Divide 24 by -12.
x=-\frac{36}{-12}
Now solve the equation x=\frac{-6±30}{-12} when ± is minus. Subtract 30 from -6.
x=3
Divide -36 by -12.
x=-2 x=3
The equation is now solved.
18+9-6x+x^{2}+\left(x^{2}-2x-3\right)^{2}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
27-6x+x^{2}+\left(x^{2}-2x-3\right)^{2}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Add 18 and 9 to get 27.
27-6x+x^{2}+x^{4}-4x^{3}-2x^{2}+12x+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Square x^{2}-2x-3.
27-6x-x^{2}+x^{4}-4x^{3}+12x+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Combine x^{2} and -2x^{2} to get -x^{2}.
27+6x-x^{2}+x^{4}-4x^{3}+9=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Combine -6x and 12x to get 6x.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}-2x-3+3\right)^{2}
Add 27 and 9 to get 36.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}-2x\right)^{2}
Add -3 and 3 to get 0.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+\left(x^{2}\right)^{2}-4x^{2}x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2x\right)^{2}.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+x^{4}-4x^{2}x+4x^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
36+6x-x^{2}+x^{4}-4x^{3}=x^{2}+x^{4}-4x^{3}+4x^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
36+6x-x^{2}+x^{4}-4x^{3}=5x^{2}+x^{4}-4x^{3}
Combine x^{2} and 4x^{2} to get 5x^{2}.
36+6x-x^{2}+x^{4}-4x^{3}-5x^{2}=x^{4}-4x^{3}
Subtract 5x^{2} from both sides.
36+6x-6x^{2}+x^{4}-4x^{3}=x^{4}-4x^{3}
Combine -x^{2} and -5x^{2} to get -6x^{2}.
36+6x-6x^{2}+x^{4}-4x^{3}-x^{4}=-4x^{3}
Subtract x^{4} from both sides.
36+6x-6x^{2}-4x^{3}=-4x^{3}
Combine x^{4} and -x^{4} to get 0.
36+6x-6x^{2}-4x^{3}+4x^{3}=0
Add 4x^{3} to both sides.
36+6x-6x^{2}=0
Combine -4x^{3} and 4x^{3} to get 0.
6x-6x^{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
-6x^{2}+6x=-36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+6x}{-6}=-\frac{36}{-6}
Divide both sides by -6.
x^{2}+\frac{6}{-6}x=-\frac{36}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-x=-\frac{36}{-6}
Divide 6 by -6.
x^{2}-x=6
Divide -36 by -6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Simplify.
x=3 x=-2
Add \frac{1}{2} to both sides of the equation.