Evaluate
\frac{41}{2}=20.5
Factor
\frac{41}{2} = 20\frac{1}{2} = 20.5
Share
Copied to clipboard
18-\frac{18}{5}-\left(-\frac{6\times 10+1}{10}\right)
Fraction \frac{-18}{5} can be rewritten as -\frac{18}{5} by extracting the negative sign.
\frac{90}{5}-\frac{18}{5}-\left(-\frac{6\times 10+1}{10}\right)
Convert 18 to fraction \frac{90}{5}.
\frac{90-18}{5}-\left(-\frac{6\times 10+1}{10}\right)
Since \frac{90}{5} and \frac{18}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{72}{5}-\left(-\frac{6\times 10+1}{10}\right)
Subtract 18 from 90 to get 72.
\frac{72}{5}-\left(-\frac{60+1}{10}\right)
Multiply 6 and 10 to get 60.
\frac{72}{5}-\left(-\frac{61}{10}\right)
Add 60 and 1 to get 61.
\frac{72}{5}+\frac{61}{10}
The opposite of -\frac{61}{10} is \frac{61}{10}.
\frac{144}{10}+\frac{61}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{72}{5} and \frac{61}{10} to fractions with denominator 10.
\frac{144+61}{10}
Since \frac{144}{10} and \frac{61}{10} have the same denominator, add them by adding their numerators.
\frac{205}{10}
Add 144 and 61 to get 205.
\frac{41}{2}
Reduce the fraction \frac{205}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}