Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{224)}\phantom{1}\\224\overline{)1792}\\\end{array}
Use the 1^{st} digit 1 from dividend 1792
\begin{array}{l}\phantom{224)}0\phantom{2}\\224\overline{)1792}\\\end{array}
Since 1 is less than 224, use the next digit 7 from dividend 1792 and add 0 to the quotient
\begin{array}{l}\phantom{224)}0\phantom{3}\\224\overline{)1792}\\\end{array}
Use the 2^{nd} digit 7 from dividend 1792
\begin{array}{l}\phantom{224)}00\phantom{4}\\224\overline{)1792}\\\end{array}
Since 17 is less than 224, use the next digit 9 from dividend 1792 and add 0 to the quotient
\begin{array}{l}\phantom{224)}00\phantom{5}\\224\overline{)1792}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1792
\begin{array}{l}\phantom{224)}000\phantom{6}\\224\overline{)1792}\\\end{array}
Since 179 is less than 224, use the next digit 2 from dividend 1792 and add 0 to the quotient
\begin{array}{l}\phantom{224)}000\phantom{7}\\224\overline{)1792}\\\end{array}
Use the 4^{th} digit 2 from dividend 1792
\begin{array}{l}\phantom{224)}0008\phantom{8}\\224\overline{)1792}\\\phantom{224)}\underline{\phantom{}1792\phantom{}}\\\phantom{224)9999}0\\\end{array}
Find closest multiple of 224 to 1792. We see that 8 \times 224 = 1792 is the nearest. Now subtract 1792 from 1792 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 224, stop the division. The reminder is 0. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}