Evaluate
\frac{179}{89}\approx 2.011235955
Factor
\frac{179}{89} = 2\frac{1}{89} = 2.0112359550561796
Share
Copied to clipboard
\begin{array}{l}\phantom{89)}\phantom{1}\\89\overline{)179}\\\end{array}
Use the 1^{st} digit 1 from dividend 179
\begin{array}{l}\phantom{89)}0\phantom{2}\\89\overline{)179}\\\end{array}
Since 1 is less than 89, use the next digit 7 from dividend 179 and add 0 to the quotient
\begin{array}{l}\phantom{89)}0\phantom{3}\\89\overline{)179}\\\end{array}
Use the 2^{nd} digit 7 from dividend 179
\begin{array}{l}\phantom{89)}00\phantom{4}\\89\overline{)179}\\\end{array}
Since 17 is less than 89, use the next digit 9 from dividend 179 and add 0 to the quotient
\begin{array}{l}\phantom{89)}00\phantom{5}\\89\overline{)179}\\\end{array}
Use the 3^{rd} digit 9 from dividend 179
\begin{array}{l}\phantom{89)}002\phantom{6}\\89\overline{)179}\\\phantom{89)}\underline{\phantom{}178\phantom{}}\\\phantom{89)99}1\\\end{array}
Find closest multiple of 89 to 179. We see that 2 \times 89 = 178 is the nearest. Now subtract 178 from 179 to get reminder 1. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }1
Since 1 is less than 89, stop the division. The reminder is 1. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}