Solve for a
a=\frac{179n}{180}+2
n\neq 0
Solve for n
n=\frac{180\left(a-2\right)}{179}
a\neq 2
Share
Copied to clipboard
179n=180\left(a-2\right)
Multiply both sides of the equation by n.
179n=180a-360
Use the distributive property to multiply 180 by a-2.
180a-360=179n
Swap sides so that all variable terms are on the left hand side.
180a=179n+360
Add 360 to both sides.
\frac{180a}{180}=\frac{179n+360}{180}
Divide both sides by 180.
a=\frac{179n+360}{180}
Dividing by 180 undoes the multiplication by 180.
a=\frac{179n}{180}+2
Divide 179n+360 by 180.
179n=180\left(a-2\right)
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
179n=180a-360
Use the distributive property to multiply 180 by a-2.
\frac{179n}{179}=\frac{180a-360}{179}
Divide both sides by 179.
n=\frac{180a-360}{179}
Dividing by 179 undoes the multiplication by 179.
n=\frac{180a-360}{179}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}