Evaluate
\frac{8839}{8}=1104.875
Factor
\frac{8839}{2 ^ {3}} = 1104\frac{7}{8} = 1104.875
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)17678}\\\end{array}
Use the 1^{st} digit 1 from dividend 17678
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)17678}\\\end{array}
Since 1 is less than 16, use the next digit 7 from dividend 17678 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)17678}\\\end{array}
Use the 2^{nd} digit 7 from dividend 17678
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)17678}\\\phantom{16)}\underline{\phantom{}16\phantom{999}}\\\phantom{16)9}1\\\end{array}
Find closest multiple of 16 to 17. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 17 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)17678}\\\phantom{16)}\underline{\phantom{}16\phantom{999}}\\\phantom{16)9}16\\\end{array}
Use the 3^{rd} digit 6 from dividend 17678
\begin{array}{l}\phantom{16)}011\phantom{6}\\16\overline{)17678}\\\phantom{16)}\underline{\phantom{}16\phantom{999}}\\\phantom{16)9}16\\\phantom{16)}\underline{\phantom{9}16\phantom{99}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 16. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 16 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{16)}011\phantom{7}\\16\overline{)17678}\\\phantom{16)}\underline{\phantom{}16\phantom{999}}\\\phantom{16)9}16\\\phantom{16)}\underline{\phantom{9}16\phantom{99}}\\\phantom{16)999}7\\\end{array}
Use the 4^{th} digit 7 from dividend 17678
\begin{array}{l}\phantom{16)}0110\phantom{8}\\16\overline{)17678}\\\phantom{16)}\underline{\phantom{}16\phantom{999}}\\\phantom{16)9}16\\\phantom{16)}\underline{\phantom{9}16\phantom{99}}\\\phantom{16)999}7\\\end{array}
Since 7 is less than 16, use the next digit 8 from dividend 17678 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0110\phantom{9}\\16\overline{)17678}\\\phantom{16)}\underline{\phantom{}16\phantom{999}}\\\phantom{16)9}16\\\phantom{16)}\underline{\phantom{9}16\phantom{99}}\\\phantom{16)999}78\\\end{array}
Use the 5^{th} digit 8 from dividend 17678
\begin{array}{l}\phantom{16)}01104\phantom{10}\\16\overline{)17678}\\\phantom{16)}\underline{\phantom{}16\phantom{999}}\\\phantom{16)9}16\\\phantom{16)}\underline{\phantom{9}16\phantom{99}}\\\phantom{16)999}78\\\phantom{16)}\underline{\phantom{999}64\phantom{}}\\\phantom{16)999}14\\\end{array}
Find closest multiple of 16 to 78. We see that 4 \times 16 = 64 is the nearest. Now subtract 64 from 78 to get reminder 14. Add 4 to quotient.
\text{Quotient: }1104 \text{Reminder: }14
Since 14 is less than 16, stop the division. The reminder is 14. The topmost line 01104 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1104.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}