Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)176}\\\end{array}
Use the 1^{st} digit 1 from dividend 176
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)176}\\\end{array}
Since 1 is less than 22, use the next digit 7 from dividend 176 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)176}\\\end{array}
Use the 2^{nd} digit 7 from dividend 176
\begin{array}{l}\phantom{22)}00\phantom{4}\\22\overline{)176}\\\end{array}
Since 17 is less than 22, use the next digit 6 from dividend 176 and add 0 to the quotient
\begin{array}{l}\phantom{22)}00\phantom{5}\\22\overline{)176}\\\end{array}
Use the 3^{rd} digit 6 from dividend 176
\begin{array}{l}\phantom{22)}008\phantom{6}\\22\overline{)176}\\\phantom{22)}\underline{\phantom{}176\phantom{}}\\\phantom{22)999}0\\\end{array}
Find closest multiple of 22 to 176. We see that 8 \times 22 = 176 is the nearest. Now subtract 176 from 176 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 22, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}