Factor
5\left(7a-4\right)\left(5a+3\right)
Evaluate
5\left(35a^{2}+a-12\right)
Share
Copied to clipboard
5\left(35a^{2}+a-12\right)
Factor out 5.
p+q=1 pq=35\left(-12\right)=-420
Consider 35a^{2}+a-12. Factor the expression by grouping. First, the expression needs to be rewritten as 35a^{2}+pa+qa-12. To find p and q, set up a system to be solved.
-1,420 -2,210 -3,140 -4,105 -5,84 -6,70 -7,60 -10,42 -12,35 -14,30 -15,28 -20,21
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -420.
-1+420=419 -2+210=208 -3+140=137 -4+105=101 -5+84=79 -6+70=64 -7+60=53 -10+42=32 -12+35=23 -14+30=16 -15+28=13 -20+21=1
Calculate the sum for each pair.
p=-20 q=21
The solution is the pair that gives sum 1.
\left(35a^{2}-20a\right)+\left(21a-12\right)
Rewrite 35a^{2}+a-12 as \left(35a^{2}-20a\right)+\left(21a-12\right).
5a\left(7a-4\right)+3\left(7a-4\right)
Factor out 5a in the first and 3 in the second group.
\left(7a-4\right)\left(5a+3\right)
Factor out common term 7a-4 by using distributive property.
5\left(7a-4\right)\left(5a+3\right)
Rewrite the complete factored expression.
175a^{2}+5a-60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-5±\sqrt{5^{2}-4\times 175\left(-60\right)}}{2\times 175}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-5±\sqrt{25-4\times 175\left(-60\right)}}{2\times 175}
Square 5.
a=\frac{-5±\sqrt{25-700\left(-60\right)}}{2\times 175}
Multiply -4 times 175.
a=\frac{-5±\sqrt{25+42000}}{2\times 175}
Multiply -700 times -60.
a=\frac{-5±\sqrt{42025}}{2\times 175}
Add 25 to 42000.
a=\frac{-5±205}{2\times 175}
Take the square root of 42025.
a=\frac{-5±205}{350}
Multiply 2 times 175.
a=\frac{200}{350}
Now solve the equation a=\frac{-5±205}{350} when ± is plus. Add -5 to 205.
a=\frac{4}{7}
Reduce the fraction \frac{200}{350} to lowest terms by extracting and canceling out 50.
a=-\frac{210}{350}
Now solve the equation a=\frac{-5±205}{350} when ± is minus. Subtract 205 from -5.
a=-\frac{3}{5}
Reduce the fraction \frac{-210}{350} to lowest terms by extracting and canceling out 70.
175a^{2}+5a-60=175\left(a-\frac{4}{7}\right)\left(a-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{7} for x_{1} and -\frac{3}{5} for x_{2}.
175a^{2}+5a-60=175\left(a-\frac{4}{7}\right)\left(a+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
175a^{2}+5a-60=175\times \frac{7a-4}{7}\left(a+\frac{3}{5}\right)
Subtract \frac{4}{7} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
175a^{2}+5a-60=175\times \frac{7a-4}{7}\times \frac{5a+3}{5}
Add \frac{3}{5} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
175a^{2}+5a-60=175\times \frac{\left(7a-4\right)\left(5a+3\right)}{7\times 5}
Multiply \frac{7a-4}{7} times \frac{5a+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
175a^{2}+5a-60=175\times \frac{\left(7a-4\right)\left(5a+3\right)}{35}
Multiply 7 times 5.
175a^{2}+5a-60=5\left(7a-4\right)\left(5a+3\right)
Cancel out 35, the greatest common factor in 175 and 35.
x ^ 2 +\frac{1}{35}x -\frac{12}{35} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 175
r + s = -\frac{1}{35} rs = -\frac{12}{35}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{70} - u s = -\frac{1}{70} + u
Two numbers r and s sum up to -\frac{1}{35} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{35} = -\frac{1}{70}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{70} - u) (-\frac{1}{70} + u) = -\frac{12}{35}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{12}{35}
\frac{1}{4900} - u^2 = -\frac{12}{35}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{12}{35}-\frac{1}{4900} = -\frac{1681}{4900}
Simplify the expression by subtracting \frac{1}{4900} on both sides
u^2 = \frac{1681}{4900} u = \pm\sqrt{\frac{1681}{4900}} = \pm \frac{41}{70}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{70} - \frac{41}{70} = -0.600 s = -\frac{1}{70} + \frac{41}{70} = 0.571
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}