Solve for x
x=-\frac{87}{50000}=-0.00174
Graph
Share
Copied to clipboard
174\times 10^{-5}x=-x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
174\times \frac{1}{100000}x=-x^{2}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{87}{50000}x=-x^{2}
Multiply 174 and \frac{1}{100000} to get \frac{87}{50000}.
\frac{87}{50000}x+x^{2}=0
Add x^{2} to both sides.
x\left(\frac{87}{50000}+x\right)=0
Factor out x.
x=0 x=-\frac{87}{50000}
To find equation solutions, solve x=0 and \frac{87}{50000}+x=0.
x=-\frac{87}{50000}
Variable x cannot be equal to 0.
174\times 10^{-5}x=-x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
174\times \frac{1}{100000}x=-x^{2}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{87}{50000}x=-x^{2}
Multiply 174 and \frac{1}{100000} to get \frac{87}{50000}.
\frac{87}{50000}x+x^{2}=0
Add x^{2} to both sides.
x^{2}+\frac{87}{50000}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{87}{50000}±\sqrt{\left(\frac{87}{50000}\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{87}{50000} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2}
Take the square root of \left(\frac{87}{50000}\right)^{2}.
x=\frac{0}{2}
Now solve the equation x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} when ± is plus. Add -\frac{87}{50000} to \frac{87}{50000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by 2.
x=-\frac{\frac{87}{25000}}{2}
Now solve the equation x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} when ± is minus. Subtract \frac{87}{50000} from -\frac{87}{50000} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{87}{50000}
Divide -\frac{87}{25000} by 2.
x=0 x=-\frac{87}{50000}
The equation is now solved.
x=-\frac{87}{50000}
Variable x cannot be equal to 0.
174\times 10^{-5}x=-x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
174\times \frac{1}{100000}x=-x^{2}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{87}{50000}x=-x^{2}
Multiply 174 and \frac{1}{100000} to get \frac{87}{50000}.
\frac{87}{50000}x+x^{2}=0
Add x^{2} to both sides.
x^{2}+\frac{87}{50000}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{87}{50000}x+\left(\frac{87}{100000}\right)^{2}=\left(\frac{87}{100000}\right)^{2}
Divide \frac{87}{50000}, the coefficient of the x term, by 2 to get \frac{87}{100000}. Then add the square of \frac{87}{100000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}=\frac{7569}{10000000000}
Square \frac{87}{100000} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{87}{100000}\right)^{2}=\frac{7569}{10000000000}
Factor x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{87}{100000}\right)^{2}}=\sqrt{\frac{7569}{10000000000}}
Take the square root of both sides of the equation.
x+\frac{87}{100000}=\frac{87}{100000} x+\frac{87}{100000}=-\frac{87}{100000}
Simplify.
x=0 x=-\frac{87}{50000}
Subtract \frac{87}{100000} from both sides of the equation.
x=-\frac{87}{50000}
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}