Evaluate
\frac{29}{2}=14.5
Factor
\frac{29}{2} = 14\frac{1}{2} = 14.5
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)174}\\\end{array}
Use the 1^{st} digit 1 from dividend 174
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)174}\\\end{array}
Since 1 is less than 12, use the next digit 7 from dividend 174 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)174}\\\end{array}
Use the 2^{nd} digit 7 from dividend 174
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)174}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}5\\\end{array}
Find closest multiple of 12 to 17. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 17 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)174}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}54\\\end{array}
Use the 3^{rd} digit 4 from dividend 174
\begin{array}{l}\phantom{12)}014\phantom{6}\\12\overline{)174}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}54\\\phantom{12)}\underline{\phantom{9}48\phantom{}}\\\phantom{12)99}6\\\end{array}
Find closest multiple of 12 to 54. We see that 4 \times 12 = 48 is the nearest. Now subtract 48 from 54 to get reminder 6. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }6
Since 6 is less than 12, stop the division. The reminder is 6. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}