Solve for x (complex solution)
x=\frac{9+\sqrt{13067}i}{346}\approx 0.026011561+0.330378553i
x=\frac{-\sqrt{13067}i+9}{346}\approx 0.026011561-0.330378553i
Graph
Share
Copied to clipboard
173x^{2}-9x+19=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 173\times 19}}{2\times 173}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 173 for a, -9 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 173\times 19}}{2\times 173}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-692\times 19}}{2\times 173}
Multiply -4 times 173.
x=\frac{-\left(-9\right)±\sqrt{81-13148}}{2\times 173}
Multiply -692 times 19.
x=\frac{-\left(-9\right)±\sqrt{-13067}}{2\times 173}
Add 81 to -13148.
x=\frac{-\left(-9\right)±\sqrt{13067}i}{2\times 173}
Take the square root of -13067.
x=\frac{9±\sqrt{13067}i}{2\times 173}
The opposite of -9 is 9.
x=\frac{9±\sqrt{13067}i}{346}
Multiply 2 times 173.
x=\frac{9+\sqrt{13067}i}{346}
Now solve the equation x=\frac{9±\sqrt{13067}i}{346} when ± is plus. Add 9 to i\sqrt{13067}.
x=\frac{-\sqrt{13067}i+9}{346}
Now solve the equation x=\frac{9±\sqrt{13067}i}{346} when ± is minus. Subtract i\sqrt{13067} from 9.
x=\frac{9+\sqrt{13067}i}{346} x=\frac{-\sqrt{13067}i+9}{346}
The equation is now solved.
173x^{2}-9x+19=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
173x^{2}-9x+19-19=-19
Subtract 19 from both sides of the equation.
173x^{2}-9x=-19
Subtracting 19 from itself leaves 0.
\frac{173x^{2}-9x}{173}=-\frac{19}{173}
Divide both sides by 173.
x^{2}-\frac{9}{173}x=-\frac{19}{173}
Dividing by 173 undoes the multiplication by 173.
x^{2}-\frac{9}{173}x+\left(-\frac{9}{346}\right)^{2}=-\frac{19}{173}+\left(-\frac{9}{346}\right)^{2}
Divide -\frac{9}{173}, the coefficient of the x term, by 2 to get -\frac{9}{346}. Then add the square of -\frac{9}{346} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{173}x+\frac{81}{119716}=-\frac{19}{173}+\frac{81}{119716}
Square -\frac{9}{346} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{173}x+\frac{81}{119716}=-\frac{13067}{119716}
Add -\frac{19}{173} to \frac{81}{119716} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{346}\right)^{2}=-\frac{13067}{119716}
Factor x^{2}-\frac{9}{173}x+\frac{81}{119716}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{346}\right)^{2}}=\sqrt{-\frac{13067}{119716}}
Take the square root of both sides of the equation.
x-\frac{9}{346}=\frac{\sqrt{13067}i}{346} x-\frac{9}{346}=-\frac{\sqrt{13067}i}{346}
Simplify.
x=\frac{9+\sqrt{13067}i}{346} x=\frac{-\sqrt{13067}i+9}{346}
Add \frac{9}{346} to both sides of the equation.
x ^ 2 -\frac{9}{173}x +\frac{19}{173} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 173
r + s = \frac{9}{173} rs = \frac{19}{173}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{346} - u s = \frac{9}{346} + u
Two numbers r and s sum up to \frac{9}{173} exactly when the average of the two numbers is \frac{1}{2}*\frac{9}{173} = \frac{9}{346}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{346} - u) (\frac{9}{346} + u) = \frac{19}{173}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{19}{173}
\frac{81}{119716} - u^2 = \frac{19}{173}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{19}{173}-\frac{81}{119716} = \frac{13067}{119716}
Simplify the expression by subtracting \frac{81}{119716} on both sides
u^2 = -\frac{13067}{119716} u = \pm\sqrt{-\frac{13067}{119716}} = \pm \frac{\sqrt{13067}}{346}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{346} - \frac{\sqrt{13067}}{346}i = 0.026 - 0.330i s = \frac{9}{346} + \frac{\sqrt{13067}}{346}i = 0.026 + 0.330i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}