Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

172700x-1254800x^{2}=-\frac{1}{628}
Subtract 1254800x^{2} from both sides.
172700x-1254800x^{2}+\frac{1}{628}=0
Add \frac{1}{628} to both sides.
-1254800x^{2}+172700x+\frac{1}{628}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-172700±\sqrt{172700^{2}-4\left(-1254800\right)\times \frac{1}{628}}}{2\left(-1254800\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1254800 for a, 172700 for b, and \frac{1}{628} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-172700±\sqrt{29825290000-4\left(-1254800\right)\times \frac{1}{628}}}{2\left(-1254800\right)}
Square 172700.
x=\frac{-172700±\sqrt{29825290000+5019200\times \frac{1}{628}}}{2\left(-1254800\right)}
Multiply -4 times -1254800.
x=\frac{-172700±\sqrt{29825290000+\frac{1254800}{157}}}{2\left(-1254800\right)}
Multiply 5019200 times \frac{1}{628}.
x=\frac{-172700±\sqrt{\frac{4682571784800}{157}}}{2\left(-1254800\right)}
Add 29825290000 to \frac{1254800}{157}.
x=\frac{-172700±\frac{20\sqrt{1837909425534}}{157}}{2\left(-1254800\right)}
Take the square root of \frac{4682571784800}{157}.
x=\frac{-172700±\frac{20\sqrt{1837909425534}}{157}}{-2509600}
Multiply 2 times -1254800.
x=\frac{\frac{20\sqrt{1837909425534}}{157}-172700}{-2509600}
Now solve the equation x=\frac{-172700±\frac{20\sqrt{1837909425534}}{157}}{-2509600} when ± is plus. Add -172700 to \frac{20\sqrt{1837909425534}}{157}.
x=-\frac{\sqrt{1837909425534}}{19700360}+\frac{1727}{25096}
Divide -172700+\frac{20\sqrt{1837909425534}}{157} by -2509600.
x=\frac{-\frac{20\sqrt{1837909425534}}{157}-172700}{-2509600}
Now solve the equation x=\frac{-172700±\frac{20\sqrt{1837909425534}}{157}}{-2509600} when ± is minus. Subtract \frac{20\sqrt{1837909425534}}{157} from -172700.
x=\frac{\sqrt{1837909425534}}{19700360}+\frac{1727}{25096}
Divide -172700-\frac{20\sqrt{1837909425534}}{157} by -2509600.
x=-\frac{\sqrt{1837909425534}}{19700360}+\frac{1727}{25096} x=\frac{\sqrt{1837909425534}}{19700360}+\frac{1727}{25096}
The equation is now solved.
172700x-1254800x^{2}=-\frac{1}{628}
Subtract 1254800x^{2} from both sides.
-1254800x^{2}+172700x=-\frac{1}{628}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-1254800x^{2}+172700x}{-1254800}=-\frac{\frac{1}{628}}{-1254800}
Divide both sides by -1254800.
x^{2}+\frac{172700}{-1254800}x=-\frac{\frac{1}{628}}{-1254800}
Dividing by -1254800 undoes the multiplication by -1254800.
x^{2}-\frac{1727}{12548}x=-\frac{\frac{1}{628}}{-1254800}
Reduce the fraction \frac{172700}{-1254800} to lowest terms by extracting and canceling out 100.
x^{2}-\frac{1727}{12548}x=\frac{1}{788014400}
Divide -\frac{1}{628} by -1254800.
x^{2}-\frac{1727}{12548}x+\left(-\frac{1727}{25096}\right)^{2}=\frac{1}{788014400}+\left(-\frac{1727}{25096}\right)^{2}
Divide -\frac{1727}{12548}, the coefficient of the x term, by 2 to get -\frac{1727}{25096}. Then add the square of -\frac{1727}{25096} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1727}{12548}x+\frac{2982529}{629809216}=\frac{1}{788014400}+\frac{2982529}{629809216}
Square -\frac{1727}{25096} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1727}{12548}x+\frac{2982529}{629809216}=\frac{5853214731}{1236000586400}
Add \frac{1}{788014400} to \frac{2982529}{629809216} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1727}{25096}\right)^{2}=\frac{5853214731}{1236000586400}
Factor x^{2}-\frac{1727}{12548}x+\frac{2982529}{629809216}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1727}{25096}\right)^{2}}=\sqrt{\frac{5853214731}{1236000586400}}
Take the square root of both sides of the equation.
x-\frac{1727}{25096}=\frac{\sqrt{1837909425534}}{19700360} x-\frac{1727}{25096}=-\frac{\sqrt{1837909425534}}{19700360}
Simplify.
x=\frac{\sqrt{1837909425534}}{19700360}+\frac{1727}{25096} x=-\frac{\sqrt{1837909425534}}{19700360}+\frac{1727}{25096}
Add \frac{1727}{25096} to both sides of the equation.