Evaluate
\frac{86}{41}\approx 2.097560976
Factor
\frac{2 \cdot 43}{41} = 2\frac{4}{41} = 2.097560975609756
Share
Copied to clipboard
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)172}\\\end{array}
Use the 1^{st} digit 1 from dividend 172
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)172}\\\end{array}
Since 1 is less than 82, use the next digit 7 from dividend 172 and add 0 to the quotient
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)172}\\\end{array}
Use the 2^{nd} digit 7 from dividend 172
\begin{array}{l}\phantom{82)}00\phantom{4}\\82\overline{)172}\\\end{array}
Since 17 is less than 82, use the next digit 2 from dividend 172 and add 0 to the quotient
\begin{array}{l}\phantom{82)}00\phantom{5}\\82\overline{)172}\\\end{array}
Use the 3^{rd} digit 2 from dividend 172
\begin{array}{l}\phantom{82)}002\phantom{6}\\82\overline{)172}\\\phantom{82)}\underline{\phantom{}164\phantom{}}\\\phantom{82)99}8\\\end{array}
Find closest multiple of 82 to 172. We see that 2 \times 82 = 164 is the nearest. Now subtract 164 from 172 to get reminder 8. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }8
Since 8 is less than 82, stop the division. The reminder is 8. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}