Evaluate
\frac{19}{2}=9.5
Factor
\frac{19}{2} = 9\frac{1}{2} = 9.5
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)171}\\\end{array}
Use the 1^{st} digit 1 from dividend 171
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)171}\\\end{array}
Since 1 is less than 18, use the next digit 7 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)171}\\\end{array}
Use the 2^{nd} digit 7 from dividend 171
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)171}\\\end{array}
Since 17 is less than 18, use the next digit 1 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)171}\\\end{array}
Use the 3^{rd} digit 1 from dividend 171
\begin{array}{l}\phantom{18)}009\phantom{6}\\18\overline{)171}\\\phantom{18)}\underline{\phantom{}162\phantom{}}\\\phantom{18)99}9\\\end{array}
Find closest multiple of 18 to 171. We see that 9 \times 18 = 162 is the nearest. Now subtract 162 from 171 to get reminder 9. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }9
Since 9 is less than 18, stop the division. The reminder is 9. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}