Evaluate
\frac{171}{10}=17.1
Factor
\frac{3 ^ {2} \cdot 19}{2 \cdot 5} = 17\frac{1}{10} = 17.1
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)171}\\\end{array}
Use the 1^{st} digit 1 from dividend 171
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)171}\\\end{array}
Since 1 is less than 10, use the next digit 7 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)171}\\\end{array}
Use the 2^{nd} digit 7 from dividend 171
\begin{array}{l}\phantom{10)}01\phantom{4}\\10\overline{)171}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}7\\\end{array}
Find closest multiple of 10 to 17. We see that 1 \times 10 = 10 is the nearest. Now subtract 10 from 17 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{10)}01\phantom{5}\\10\overline{)171}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}71\\\end{array}
Use the 3^{rd} digit 1 from dividend 171
\begin{array}{l}\phantom{10)}017\phantom{6}\\10\overline{)171}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}71\\\phantom{10)}\underline{\phantom{9}70\phantom{}}\\\phantom{10)99}1\\\end{array}
Find closest multiple of 10 to 71. We see that 7 \times 10 = 70 is the nearest. Now subtract 70 from 71 to get reminder 1. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }1
Since 1 is less than 10, stop the division. The reminder is 1. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}