Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1707x^{2}+960x-5225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-960±\sqrt{960^{2}-4\times 1707\left(-5225\right)}}{2\times 1707}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1707 for a, 960 for b, and -5225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-960±\sqrt{921600-4\times 1707\left(-5225\right)}}{2\times 1707}
Square 960.
x=\frac{-960±\sqrt{921600-6828\left(-5225\right)}}{2\times 1707}
Multiply -4 times 1707.
x=\frac{-960±\sqrt{921600+35676300}}{2\times 1707}
Multiply -6828 times -5225.
x=\frac{-960±\sqrt{36597900}}{2\times 1707}
Add 921600 to 35676300.
x=\frac{-960±10\sqrt{365979}}{2\times 1707}
Take the square root of 36597900.
x=\frac{-960±10\sqrt{365979}}{3414}
Multiply 2 times 1707.
x=\frac{10\sqrt{365979}-960}{3414}
Now solve the equation x=\frac{-960±10\sqrt{365979}}{3414} when ± is plus. Add -960 to 10\sqrt{365979}.
x=\frac{5\sqrt{365979}}{1707}-\frac{160}{569}
Divide -960+10\sqrt{365979} by 3414.
x=\frac{-10\sqrt{365979}-960}{3414}
Now solve the equation x=\frac{-960±10\sqrt{365979}}{3414} when ± is minus. Subtract 10\sqrt{365979} from -960.
x=-\frac{5\sqrt{365979}}{1707}-\frac{160}{569}
Divide -960-10\sqrt{365979} by 3414.
x=\frac{5\sqrt{365979}}{1707}-\frac{160}{569} x=-\frac{5\sqrt{365979}}{1707}-\frac{160}{569}
The equation is now solved.
1707x^{2}+960x-5225=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1707x^{2}+960x-5225-\left(-5225\right)=-\left(-5225\right)
Add 5225 to both sides of the equation.
1707x^{2}+960x=-\left(-5225\right)
Subtracting -5225 from itself leaves 0.
1707x^{2}+960x=5225
Subtract -5225 from 0.
\frac{1707x^{2}+960x}{1707}=\frac{5225}{1707}
Divide both sides by 1707.
x^{2}+\frac{960}{1707}x=\frac{5225}{1707}
Dividing by 1707 undoes the multiplication by 1707.
x^{2}+\frac{320}{569}x=\frac{5225}{1707}
Reduce the fraction \frac{960}{1707} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{320}{569}x+\left(\frac{160}{569}\right)^{2}=\frac{5225}{1707}+\left(\frac{160}{569}\right)^{2}
Divide \frac{320}{569}, the coefficient of the x term, by 2 to get \frac{160}{569}. Then add the square of \frac{160}{569} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{320}{569}x+\frac{25600}{323761}=\frac{5225}{1707}+\frac{25600}{323761}
Square \frac{160}{569} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{320}{569}x+\frac{25600}{323761}=\frac{3049825}{971283}
Add \frac{5225}{1707} to \frac{25600}{323761} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{160}{569}\right)^{2}=\frac{3049825}{971283}
Factor x^{2}+\frac{320}{569}x+\frac{25600}{323761}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{160}{569}\right)^{2}}=\sqrt{\frac{3049825}{971283}}
Take the square root of both sides of the equation.
x+\frac{160}{569}=\frac{5\sqrt{365979}}{1707} x+\frac{160}{569}=-\frac{5\sqrt{365979}}{1707}
Simplify.
x=\frac{5\sqrt{365979}}{1707}-\frac{160}{569} x=-\frac{5\sqrt{365979}}{1707}-\frac{160}{569}
Subtract \frac{160}{569} from both sides of the equation.