Evaluate
\frac{4250000}{3}\approx 1416666.666666667
Factor
\frac{2 ^ {4} \cdot 5 ^ {6} \cdot 17}{3} = 1416666\frac{2}{3} = 1416666.6666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)17000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 17000000
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)17000000}\\\end{array}
Since 1 is less than 12, use the next digit 7 from dividend 17000000 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)17000000}\\\end{array}
Use the 2^{nd} digit 7 from dividend 17000000
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}5\\\end{array}
Find closest multiple of 12 to 17. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 17 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\end{array}
Use the 3^{rd} digit 0 from dividend 17000000
\begin{array}{l}\phantom{12)}014\phantom{6}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}2\\\end{array}
Find closest multiple of 12 to 50. We see that 4 \times 12 = 48 is the nearest. Now subtract 48 from 50 to get reminder 2. Add 4 to quotient.
\begin{array}{l}\phantom{12)}014\phantom{7}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\end{array}
Use the 4^{th} digit 0 from dividend 17000000
\begin{array}{l}\phantom{12)}0141\phantom{8}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}8\\\end{array}
Find closest multiple of 12 to 20. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 20 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{12)}0141\phantom{9}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\end{array}
Use the 5^{th} digit 0 from dividend 17000000
\begin{array}{l}\phantom{12)}01416\phantom{10}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{999}}\\\phantom{12)9999}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{12)}01416\phantom{11}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{999}}\\\phantom{12)9999}80\\\end{array}
Use the 6^{th} digit 0 from dividend 17000000
\begin{array}{l}\phantom{12)}014166\phantom{12}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{999}}\\\phantom{12)9999}80\\\phantom{12)}\underline{\phantom{9999}72\phantom{99}}\\\phantom{12)99999}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{12)}014166\phantom{13}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{999}}\\\phantom{12)9999}80\\\phantom{12)}\underline{\phantom{9999}72\phantom{99}}\\\phantom{12)99999}80\\\end{array}
Use the 7^{th} digit 0 from dividend 17000000
\begin{array}{l}\phantom{12)}0141666\phantom{14}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{999}}\\\phantom{12)9999}80\\\phantom{12)}\underline{\phantom{9999}72\phantom{99}}\\\phantom{12)99999}80\\\phantom{12)}\underline{\phantom{99999}72\phantom{9}}\\\phantom{12)999999}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{12)}0141666\phantom{15}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{999}}\\\phantom{12)9999}80\\\phantom{12)}\underline{\phantom{9999}72\phantom{99}}\\\phantom{12)99999}80\\\phantom{12)}\underline{\phantom{99999}72\phantom{9}}\\\phantom{12)999999}80\\\end{array}
Use the 8^{th} digit 0 from dividend 17000000
\begin{array}{l}\phantom{12)}01416666\phantom{16}\\12\overline{)17000000}\\\phantom{12)}\underline{\phantom{}12\phantom{999999}}\\\phantom{12)9}50\\\phantom{12)}\underline{\phantom{9}48\phantom{99999}}\\\phantom{12)99}20\\\phantom{12)}\underline{\phantom{99}12\phantom{9999}}\\\phantom{12)999}80\\\phantom{12)}\underline{\phantom{999}72\phantom{999}}\\\phantom{12)9999}80\\\phantom{12)}\underline{\phantom{9999}72\phantom{99}}\\\phantom{12)99999}80\\\phantom{12)}\underline{\phantom{99999}72\phantom{9}}\\\phantom{12)999999}80\\\phantom{12)}\underline{\phantom{999999}72\phantom{}}\\\phantom{12)9999999}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\text{Quotient: }1416666 \text{Reminder: }8
Since 8 is less than 12, stop the division. The reminder is 8. The topmost line 01416666 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1416666.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}