Solve for c (complex solution)
\left\{\begin{matrix}\\c=17000m^{2}\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}\\c=17000m^{2}\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for m (complex solution)
m=\frac{\sqrt{170c}}{1700}
m=0
m=-\frac{\sqrt{170c}}{1700}
Solve for m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m=\frac{\sqrt{170c}}{1700}\text{; }m=-\frac{\sqrt{170c}}{1700}\text{, }&c\geq 0\end{matrix}\right.
Share
Copied to clipboard
17000m^{3}=1cm
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
1cm=17000m^{3}
Swap sides so that all variable terms are on the left hand side.
cm=17000m^{3}
Reorder the terms.
mc=17000m^{3}
The equation is in standard form.
\frac{mc}{m}=\frac{17000m^{3}}{m}
Divide both sides by m.
c=\frac{17000m^{3}}{m}
Dividing by m undoes the multiplication by m.
c=17000m^{2}
Divide 17000m^{3} by m.
17000m^{3}=1cm
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
1cm=17000m^{3}
Swap sides so that all variable terms are on the left hand side.
cm=17000m^{3}
Reorder the terms.
mc=17000m^{3}
The equation is in standard form.
\frac{mc}{m}=\frac{17000m^{3}}{m}
Divide both sides by m.
c=\frac{17000m^{3}}{m}
Dividing by m undoes the multiplication by m.
c=17000m^{2}
Divide 17000m^{3} by m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}