Solve for y
y = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
34-\left(4y-5\right)=24-10y
Multiply both sides of the equation by 2.
34-4y-\left(-5\right)=24-10y
To find the opposite of 4y-5, find the opposite of each term.
34-4y+5=24-10y
The opposite of -5 is 5.
39-4y=24-10y
Add 34 and 5 to get 39.
39-4y+10y=24
Add 10y to both sides.
39+6y=24
Combine -4y and 10y to get 6y.
6y=24-39
Subtract 39 from both sides.
6y=-15
Subtract 39 from 24 to get -15.
y=\frac{-15}{6}
Divide both sides by 6.
y=-\frac{5}{2}
Reduce the fraction \frac{-15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}