Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

17\left(y^{2}+5y\right)
Factor out 17.
y\left(y+5\right)
Consider y^{2}+5y. Factor out y.
17y\left(y+5\right)
Rewrite the complete factored expression.
17y^{2}+85y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-85±\sqrt{85^{2}}}{2\times 17}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-85±85}{2\times 17}
Take the square root of 85^{2}.
y=\frac{-85±85}{34}
Multiply 2 times 17.
y=\frac{0}{34}
Now solve the equation y=\frac{-85±85}{34} when ± is plus. Add -85 to 85.
y=0
Divide 0 by 34.
y=-\frac{170}{34}
Now solve the equation y=\frac{-85±85}{34} when ± is minus. Subtract 85 from -85.
y=-5
Divide -170 by 34.
17y^{2}+85y=17y\left(y-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -5 for x_{2}.
17y^{2}+85y=17y\left(y+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.