Solve for y
y=-\frac{1-3x-xz}{17x^{2}}
x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{9+6z+z^{2}-68y}+z+3}{34y}\text{; }x=\frac{-\sqrt{9+6z+z^{2}-68y}+z+3}{34y}\text{, }&y\neq 0\text{ and }y\leq \frac{\left(z+3\right)^{2}}{68}\\x=\frac{1}{z+3}\text{, }&y=0\text{ and }z\neq -3\end{matrix}\right.
Share
Copied to clipboard
17xyx+1+x\left(-3\right)=zx
Multiply both sides of the equation by x.
17x^{2}y+1+x\left(-3\right)=zx
Multiply x and x to get x^{2}.
17x^{2}y+x\left(-3\right)=zx-1
Subtract 1 from both sides.
17x^{2}y=zx-1-x\left(-3\right)
Subtract x\left(-3\right) from both sides.
17x^{2}y=zx-1+3x
Multiply -1 and -3 to get 3.
17x^{2}y=xz+3x-1
The equation is in standard form.
\frac{17x^{2}y}{17x^{2}}=\frac{xz+3x-1}{17x^{2}}
Divide both sides by 17x^{2}.
y=\frac{xz+3x-1}{17x^{2}}
Dividing by 17x^{2} undoes the multiplication by 17x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}