Solve for x
x=25
x=-25
Graph
Share
Copied to clipboard
17x^{2}=10625
Multiply x and x to get x^{2}.
x^{2}=\frac{10625}{17}
Divide both sides by 17.
x^{2}=625
Divide 10625 by 17 to get 625.
x=25 x=-25
Take the square root of both sides of the equation.
17x^{2}=10625
Multiply x and x to get x^{2}.
17x^{2}-10625=0
Subtract 10625 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 17\left(-10625\right)}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, 0 for b, and -10625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 17\left(-10625\right)}}{2\times 17}
Square 0.
x=\frac{0±\sqrt{-68\left(-10625\right)}}{2\times 17}
Multiply -4 times 17.
x=\frac{0±\sqrt{722500}}{2\times 17}
Multiply -68 times -10625.
x=\frac{0±850}{2\times 17}
Take the square root of 722500.
x=\frac{0±850}{34}
Multiply 2 times 17.
x=25
Now solve the equation x=\frac{0±850}{34} when ± is plus. Divide 850 by 34.
x=-25
Now solve the equation x=\frac{0±850}{34} when ± is minus. Divide -850 by 34.
x=25 x=-25
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}