Solve for x
x = \frac{2 \sqrt{66} + 3}{17} \approx 1.132239812
x=\frac{3-2\sqrt{66}}{17}\approx -0.779298636
Graph
Share
Copied to clipboard
17x^{2}-6x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 17\left(-15\right)}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, -6 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 17\left(-15\right)}}{2\times 17}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-68\left(-15\right)}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-6\right)±\sqrt{36+1020}}{2\times 17}
Multiply -68 times -15.
x=\frac{-\left(-6\right)±\sqrt{1056}}{2\times 17}
Add 36 to 1020.
x=\frac{-\left(-6\right)±4\sqrt{66}}{2\times 17}
Take the square root of 1056.
x=\frac{6±4\sqrt{66}}{2\times 17}
The opposite of -6 is 6.
x=\frac{6±4\sqrt{66}}{34}
Multiply 2 times 17.
x=\frac{4\sqrt{66}+6}{34}
Now solve the equation x=\frac{6±4\sqrt{66}}{34} when ± is plus. Add 6 to 4\sqrt{66}.
x=\frac{2\sqrt{66}+3}{17}
Divide 6+4\sqrt{66} by 34.
x=\frac{6-4\sqrt{66}}{34}
Now solve the equation x=\frac{6±4\sqrt{66}}{34} when ± is minus. Subtract 4\sqrt{66} from 6.
x=\frac{3-2\sqrt{66}}{17}
Divide 6-4\sqrt{66} by 34.
x=\frac{2\sqrt{66}+3}{17} x=\frac{3-2\sqrt{66}}{17}
The equation is now solved.
17x^{2}-6x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
17x^{2}-6x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
17x^{2}-6x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
17x^{2}-6x=15
Subtract -15 from 0.
\frac{17x^{2}-6x}{17}=\frac{15}{17}
Divide both sides by 17.
x^{2}-\frac{6}{17}x=\frac{15}{17}
Dividing by 17 undoes the multiplication by 17.
x^{2}-\frac{6}{17}x+\left(-\frac{3}{17}\right)^{2}=\frac{15}{17}+\left(-\frac{3}{17}\right)^{2}
Divide -\frac{6}{17}, the coefficient of the x term, by 2 to get -\frac{3}{17}. Then add the square of -\frac{3}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{17}x+\frac{9}{289}=\frac{15}{17}+\frac{9}{289}
Square -\frac{3}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{17}x+\frac{9}{289}=\frac{264}{289}
Add \frac{15}{17} to \frac{9}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{17}\right)^{2}=\frac{264}{289}
Factor x^{2}-\frac{6}{17}x+\frac{9}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{17}\right)^{2}}=\sqrt{\frac{264}{289}}
Take the square root of both sides of the equation.
x-\frac{3}{17}=\frac{2\sqrt{66}}{17} x-\frac{3}{17}=-\frac{2\sqrt{66}}{17}
Simplify.
x=\frac{2\sqrt{66}+3}{17} x=\frac{3-2\sqrt{66}}{17}
Add \frac{3}{17} to both sides of the equation.
x ^ 2 -\frac{6}{17}x -\frac{15}{17} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 17
r + s = \frac{6}{17} rs = -\frac{15}{17}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{17} - u s = \frac{3}{17} + u
Two numbers r and s sum up to \frac{6}{17} exactly when the average of the two numbers is \frac{1}{2}*\frac{6}{17} = \frac{3}{17}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{17} - u) (\frac{3}{17} + u) = -\frac{15}{17}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{15}{17}
\frac{9}{289} - u^2 = -\frac{15}{17}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{15}{17}-\frac{9}{289} = -\frac{264}{289}
Simplify the expression by subtracting \frac{9}{289} on both sides
u^2 = \frac{264}{289} u = \pm\sqrt{\frac{264}{289}} = \pm \frac{\sqrt{264}}{17}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{17} - \frac{\sqrt{264}}{17} = -0.779 s = \frac{3}{17} + \frac{\sqrt{264}}{17} = 1.132
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}