Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

17\left(x^{2}+3x\right)
Factor out 17.
x\left(x+3\right)
Consider x^{2}+3x. Factor out x.
17x\left(x+3\right)
Rewrite the complete factored expression.
17x^{2}+51x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-51±\sqrt{51^{2}}}{2\times 17}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-51±51}{2\times 17}
Take the square root of 51^{2}.
x=\frac{-51±51}{34}
Multiply 2 times 17.
x=\frac{0}{34}
Now solve the equation x=\frac{-51±51}{34} when ± is plus. Add -51 to 51.
x=0
Divide 0 by 34.
x=-\frac{102}{34}
Now solve the equation x=\frac{-51±51}{34} when ± is minus. Subtract 51 from -51.
x=-3
Divide -102 by 34.
17x^{2}+51x=17x\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -3 for x_{2}.
17x^{2}+51x=17x\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.