Solve for p
p = -\frac{5}{4} = -1\frac{1}{4} = -1.25
p=-3
Share
Copied to clipboard
17p+4p^{2}+15=0
Add 15 to both sides.
4p^{2}+17p+15=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=17 ab=4\times 15=60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4p^{2}+ap+bp+15. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=5 b=12
The solution is the pair that gives sum 17.
\left(4p^{2}+5p\right)+\left(12p+15\right)
Rewrite 4p^{2}+17p+15 as \left(4p^{2}+5p\right)+\left(12p+15\right).
p\left(4p+5\right)+3\left(4p+5\right)
Factor out p in the first and 3 in the second group.
\left(4p+5\right)\left(p+3\right)
Factor out common term 4p+5 by using distributive property.
p=-\frac{5}{4} p=-3
To find equation solutions, solve 4p+5=0 and p+3=0.
4p^{2}+17p=-15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4p^{2}+17p-\left(-15\right)=-15-\left(-15\right)
Add 15 to both sides of the equation.
4p^{2}+17p-\left(-15\right)=0
Subtracting -15 from itself leaves 0.
4p^{2}+17p+15=0
Subtract -15 from 0.
p=\frac{-17±\sqrt{17^{2}-4\times 4\times 15}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 17 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-17±\sqrt{289-4\times 4\times 15}}{2\times 4}
Square 17.
p=\frac{-17±\sqrt{289-16\times 15}}{2\times 4}
Multiply -4 times 4.
p=\frac{-17±\sqrt{289-240}}{2\times 4}
Multiply -16 times 15.
p=\frac{-17±\sqrt{49}}{2\times 4}
Add 289 to -240.
p=\frac{-17±7}{2\times 4}
Take the square root of 49.
p=\frac{-17±7}{8}
Multiply 2 times 4.
p=-\frac{10}{8}
Now solve the equation p=\frac{-17±7}{8} when ± is plus. Add -17 to 7.
p=-\frac{5}{4}
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
p=-\frac{24}{8}
Now solve the equation p=\frac{-17±7}{8} when ± is minus. Subtract 7 from -17.
p=-3
Divide -24 by 8.
p=-\frac{5}{4} p=-3
The equation is now solved.
4p^{2}+17p=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4p^{2}+17p}{4}=-\frac{15}{4}
Divide both sides by 4.
p^{2}+\frac{17}{4}p=-\frac{15}{4}
Dividing by 4 undoes the multiplication by 4.
p^{2}+\frac{17}{4}p+\left(\frac{17}{8}\right)^{2}=-\frac{15}{4}+\left(\frac{17}{8}\right)^{2}
Divide \frac{17}{4}, the coefficient of the x term, by 2 to get \frac{17}{8}. Then add the square of \frac{17}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+\frac{17}{4}p+\frac{289}{64}=-\frac{15}{4}+\frac{289}{64}
Square \frac{17}{8} by squaring both the numerator and the denominator of the fraction.
p^{2}+\frac{17}{4}p+\frac{289}{64}=\frac{49}{64}
Add -\frac{15}{4} to \frac{289}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p+\frac{17}{8}\right)^{2}=\frac{49}{64}
Factor p^{2}+\frac{17}{4}p+\frac{289}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{17}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Take the square root of both sides of the equation.
p+\frac{17}{8}=\frac{7}{8} p+\frac{17}{8}=-\frac{7}{8}
Simplify.
p=-\frac{5}{4} p=-3
Subtract \frac{17}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}