Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

17c^{2}+\left(2\sqrt{3}+3\right)c+144=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
17c^{2}+\left(2\sqrt{3}+3\right)c+144-1=1-1
Subtract 1 from both sides of the equation.
17c^{2}+\left(2\sqrt{3}+3\right)c+144-1=0
Subtracting 1 from itself leaves 0.
17c^{2}+\left(2\sqrt{3}+3\right)c+143=0
Subtract 1 from 144.
c=\frac{-\left(2\sqrt{3}+3\right)±\sqrt{\left(2\sqrt{3}+3\right)^{2}-4\times 17\times 143}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, 3+2\sqrt{3} for b, and 143 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(2\sqrt{3}+3\right)±\sqrt{12\sqrt{3}+21-4\times 17\times 143}}{2\times 17}
Square 3+2\sqrt{3}.
c=\frac{-\left(2\sqrt{3}+3\right)±\sqrt{12\sqrt{3}+21-68\times 143}}{2\times 17}
Multiply -4 times 17.
c=\frac{-\left(2\sqrt{3}+3\right)±\sqrt{12\sqrt{3}+21-9724}}{2\times 17}
Multiply -68 times 143.
c=\frac{-\left(2\sqrt{3}+3\right)±\sqrt{12\sqrt{3}-9703}}{2\times 17}
Add 21+12\sqrt{3} to -9724.
c=\frac{-\left(2\sqrt{3}+3\right)±i\sqrt{9703-12\sqrt{3}}}{2\times 17}
Take the square root of -9703+12\sqrt{3}.
c=\frac{-2\sqrt{3}-3±i\sqrt{9703-12\sqrt{3}}}{34}
Multiply 2 times 17.
c=\frac{-2\sqrt{3}-3+i\sqrt{9703-12\sqrt{3}}}{34}
Now solve the equation c=\frac{-2\sqrt{3}-3±i\sqrt{9703-12\sqrt{3}}}{34} when ± is plus. Add -3-2\sqrt{3} to i\sqrt{9703-12\sqrt{3}}.
c=\frac{i\sqrt{9703-12\sqrt{3}}}{34}-\frac{\sqrt{3}}{17}-\frac{3}{34}
Divide -3-2\sqrt{3}+i\sqrt{9703-12\sqrt{3}} by 34.
c=\frac{-i\sqrt{9703-12\sqrt{3}}-2\sqrt{3}-3}{34}
Now solve the equation c=\frac{-2\sqrt{3}-3±i\sqrt{9703-12\sqrt{3}}}{34} when ± is minus. Subtract i\sqrt{9703-12\sqrt{3}} from -3-2\sqrt{3}.
c=-\frac{i\sqrt{9703-12\sqrt{3}}}{34}-\frac{\sqrt{3}}{17}-\frac{3}{34}
Divide -3-2\sqrt{3}-i\sqrt{9703-12\sqrt{3}} by 34.
c=\frac{i\sqrt{9703-12\sqrt{3}}}{34}-\frac{\sqrt{3}}{17}-\frac{3}{34} c=-\frac{i\sqrt{9703-12\sqrt{3}}}{34}-\frac{\sqrt{3}}{17}-\frac{3}{34}
The equation is now solved.
17c^{2}+\left(2\sqrt{3}+3\right)c+144=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
17c^{2}+\left(2\sqrt{3}+3\right)c+144-144=1-144
Subtract 144 from both sides of the equation.
17c^{2}+\left(2\sqrt{3}+3\right)c=1-144
Subtracting 144 from itself leaves 0.
17c^{2}+\left(2\sqrt{3}+3\right)c=-143
Subtract 144 from 1.
\frac{17c^{2}+\left(2\sqrt{3}+3\right)c}{17}=-\frac{143}{17}
Divide both sides by 17.
c^{2}+\frac{2\sqrt{3}+3}{17}c=-\frac{143}{17}
Dividing by 17 undoes the multiplication by 17.
c^{2}+\frac{2\sqrt{3}+3}{17}c+\left(\frac{\sqrt{3}}{17}+\frac{3}{34}\right)^{2}=-\frac{143}{17}+\left(\frac{\sqrt{3}}{17}+\frac{3}{34}\right)^{2}
Divide \frac{3+2\sqrt{3}}{17}, the coefficient of the x term, by 2 to get \frac{3}{34}+\frac{\sqrt{3}}{17}. Then add the square of \frac{3}{34}+\frac{\sqrt{3}}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+\frac{2\sqrt{3}+3}{17}c+\frac{3\sqrt{3}}{289}+\frac{21}{1156}=-\frac{143}{17}+\frac{3\sqrt{3}}{289}+\frac{21}{1156}
Square \frac{3}{34}+\frac{\sqrt{3}}{17}.
c^{2}+\frac{2\sqrt{3}+3}{17}c+\frac{3\sqrt{3}}{289}+\frac{21}{1156}=\frac{3\sqrt{3}}{289}-\frac{9703}{1156}
Add -\frac{143}{17} to \frac{21}{1156}+\frac{3\sqrt{3}}{289}.
\left(c+\frac{\sqrt{3}}{17}+\frac{3}{34}\right)^{2}=\frac{3\sqrt{3}}{289}-\frac{9703}{1156}
Factor c^{2}+\frac{2\sqrt{3}+3}{17}c+\frac{3\sqrt{3}}{289}+\frac{21}{1156}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{\sqrt{3}}{17}+\frac{3}{34}\right)^{2}}=\sqrt{\frac{3\sqrt{3}}{289}-\frac{9703}{1156}}
Take the square root of both sides of the equation.
c+\frac{\sqrt{3}}{17}+\frac{3}{34}=\frac{i\sqrt{9703-12\sqrt{3}}}{34} c+\frac{\sqrt{3}}{17}+\frac{3}{34}=-\frac{i\sqrt{9703-12\sqrt{3}}}{34}
Simplify.
c=\frac{i\sqrt{9703-12\sqrt{3}}}{34}-\frac{\sqrt{3}}{17}-\frac{3}{34} c=-\frac{i\sqrt{9703-12\sqrt{3}}}{34}-\frac{\sqrt{3}}{17}-\frac{3}{34}
Subtract \frac{3}{34}+\frac{\sqrt{3}}{17} from both sides of the equation.