Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

15.5=\frac{1}{2}\times 9.8t^{2}
Subtract 1.5 from 17 to get 15.5.
15.5=\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
\frac{49}{10}t^{2}=15.5
Swap sides so that all variable terms are on the left hand side.
t^{2}=15.5\times \frac{10}{49}
Multiply both sides by \frac{10}{49}, the reciprocal of \frac{49}{10}.
t^{2}=\frac{155}{49}
Multiply 15.5 and \frac{10}{49} to get \frac{155}{49}.
t=\frac{\sqrt{155}}{7} t=-\frac{\sqrt{155}}{7}
Take the square root of both sides of the equation.
15.5=\frac{1}{2}\times 9.8t^{2}
Subtract 1.5 from 17 to get 15.5.
15.5=\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
\frac{49}{10}t^{2}=15.5
Swap sides so that all variable terms are on the left hand side.
\frac{49}{10}t^{2}-15.5=0
Subtract 15.5 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times \frac{49}{10}\left(-15.5\right)}}{2\times \frac{49}{10}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{49}{10} for a, 0 for b, and -15.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times \frac{49}{10}\left(-15.5\right)}}{2\times \frac{49}{10}}
Square 0.
t=\frac{0±\sqrt{-\frac{98}{5}\left(-15.5\right)}}{2\times \frac{49}{10}}
Multiply -4 times \frac{49}{10}.
t=\frac{0±\sqrt{\frac{1519}{5}}}{2\times \frac{49}{10}}
Multiply -\frac{98}{5} times -15.5 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{0±\frac{7\sqrt{155}}{5}}{2\times \frac{49}{10}}
Take the square root of \frac{1519}{5}.
t=\frac{0±\frac{7\sqrt{155}}{5}}{\frac{49}{5}}
Multiply 2 times \frac{49}{10}.
t=\frac{\sqrt{155}}{7}
Now solve the equation t=\frac{0±\frac{7\sqrt{155}}{5}}{\frac{49}{5}} when ± is plus.
t=-\frac{\sqrt{155}}{7}
Now solve the equation t=\frac{0±\frac{7\sqrt{155}}{5}}{\frac{49}{5}} when ± is minus.
t=\frac{\sqrt{155}}{7} t=-\frac{\sqrt{155}}{7}
The equation is now solved.