Solve for x
x\geq -\frac{37}{19}
Graph
Share
Copied to clipboard
34+34x\geq 4\left(-x-10\right)
Use the distributive property to multiply 17 by 2+2x.
34+34x\geq 4\left(-x\right)-40
Use the distributive property to multiply 4 by -x-10.
34+34x-4\left(-x\right)\geq -40
Subtract 4\left(-x\right) from both sides.
34+34x-4\left(-1\right)x\geq -40
Multiply -1 and 4 to get -4.
34+34x+4x\geq -40
Multiply -4 and -1 to get 4.
34+38x\geq -40
Combine 34x and 4x to get 38x.
38x\geq -40-34
Subtract 34 from both sides.
38x\geq -74
Subtract 34 from -40 to get -74.
x\geq \frac{-74}{38}
Divide both sides by 38. Since 38 is positive, the inequality direction remains the same.
x\geq -\frac{37}{19}
Reduce the fraction \frac{-74}{38} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}