Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{17}{2}a+\frac{17}{2}\left(-3\right)\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Use the distributive property to multiply \frac{17}{2} by a-3.
\left(\frac{17}{2}a+\frac{17\left(-3\right)}{2}\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Express \frac{17}{2}\left(-3\right) as a single fraction.
\left(\frac{17}{2}a+\frac{-51}{2}\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Multiply 17 and -3 to get -51.
\left(\frac{17}{2}a-\frac{51}{2}\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Fraction \frac{-51}{2} can be rewritten as -\frac{51}{2} by extracting the negative sign.
\frac{17}{2}aa+\frac{17}{2}a\times 2-\frac{51}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Apply the distributive property by multiplying each term of \frac{17}{2}a-\frac{51}{2} by each term of a+2.
\frac{17}{2}a^{2}+\frac{17}{2}a\times 2-\frac{51}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Multiply a and a to get a^{2}.
\frac{17}{2}a^{2}+17a-\frac{51}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Cancel out 2 and 2.
\frac{17}{2}a^{2}-\frac{17}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Combine 17a and -\frac{51}{2}a to get -\frac{17}{2}a.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-\left(4+a\right)\left(4-a\right)
Cancel out 2 and 2.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-\left(4^{2}-a^{2}\right)
Consider \left(4+a\right)\left(4-a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-\left(16-a^{2}\right)
Calculate 4 to the power of 2 and get 16.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-16-\left(-a^{2}\right)
To find the opposite of 16-a^{2}, find the opposite of each term.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-16+a^{2}
The opposite of -a^{2} is a^{2}.
\frac{17}{2}a^{2}-\frac{17}{2}a-67+a^{2}
Subtract 16 from -51 to get -67.
\frac{19}{2}a^{2}-\frac{17}{2}a-67
Combine \frac{17}{2}a^{2} and a^{2} to get \frac{19}{2}a^{2}.
\left(\frac{17}{2}a+\frac{17}{2}\left(-3\right)\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Use the distributive property to multiply \frac{17}{2} by a-3.
\left(\frac{17}{2}a+\frac{17\left(-3\right)}{2}\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Express \frac{17}{2}\left(-3\right) as a single fraction.
\left(\frac{17}{2}a+\frac{-51}{2}\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Multiply 17 and -3 to get -51.
\left(\frac{17}{2}a-\frac{51}{2}\right)\left(a+2\right)-\left(4+a\right)\left(4-a\right)
Fraction \frac{-51}{2} can be rewritten as -\frac{51}{2} by extracting the negative sign.
\frac{17}{2}aa+\frac{17}{2}a\times 2-\frac{51}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Apply the distributive property by multiplying each term of \frac{17}{2}a-\frac{51}{2} by each term of a+2.
\frac{17}{2}a^{2}+\frac{17}{2}a\times 2-\frac{51}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Multiply a and a to get a^{2}.
\frac{17}{2}a^{2}+17a-\frac{51}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Cancel out 2 and 2.
\frac{17}{2}a^{2}-\frac{17}{2}a-\frac{51}{2}\times 2-\left(4+a\right)\left(4-a\right)
Combine 17a and -\frac{51}{2}a to get -\frac{17}{2}a.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-\left(4+a\right)\left(4-a\right)
Cancel out 2 and 2.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-\left(4^{2}-a^{2}\right)
Consider \left(4+a\right)\left(4-a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-\left(16-a^{2}\right)
Calculate 4 to the power of 2 and get 16.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-16-\left(-a^{2}\right)
To find the opposite of 16-a^{2}, find the opposite of each term.
\frac{17}{2}a^{2}-\frac{17}{2}a-51-16+a^{2}
The opposite of -a^{2} is a^{2}.
\frac{17}{2}a^{2}-\frac{17}{2}a-67+a^{2}
Subtract 16 from -51 to get -67.
\frac{19}{2}a^{2}-\frac{17}{2}a-67
Combine \frac{17}{2}a^{2} and a^{2} to get \frac{19}{2}a^{2}.