Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{17}{\frac{3}{2}}+\sqrt{18}-2\sin(45)+12\sqrt{2}-31
Calculate \frac{2}{3} to the power of -1 and get \frac{3}{2}.
17\times \frac{2}{3}+\sqrt{18}-2\sin(45)+12\sqrt{2}-31
Divide 17 by \frac{3}{2} by multiplying 17 by the reciprocal of \frac{3}{2}.
\frac{34}{3}+\sqrt{18}-2\sin(45)+12\sqrt{2}-31
Multiply 17 and \frac{2}{3} to get \frac{34}{3}.
\frac{34}{3}+3\sqrt{2}-2\sin(45)+12\sqrt{2}-31
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{34}{3}+3\sqrt{2}-2\times \frac{\sqrt{2}}{2}+12\sqrt{2}-31
Get the value of \sin(45) from trigonometric values table.
\frac{34}{3}+3\sqrt{2}-\sqrt{2}+12\sqrt{2}-31
Cancel out 2 and 2.
\frac{34}{3}+2\sqrt{2}+12\sqrt{2}-31
Combine 3\sqrt{2} and -\sqrt{2} to get 2\sqrt{2}.
\frac{34}{3}+14\sqrt{2}-31
Combine 2\sqrt{2} and 12\sqrt{2} to get 14\sqrt{2}.
-\frac{59}{3}+14\sqrt{2}
Subtract 31 from \frac{34}{3} to get -\frac{59}{3}.