Evaluate
14\sqrt{2}-\frac{59}{3}\approx 0.132323207
Share
Copied to clipboard
\frac{17}{\frac{3}{2}}+\sqrt{18}-2\sin(45)+12\sqrt{2}-31
Calculate \frac{2}{3} to the power of -1 and get \frac{3}{2}.
17\times \frac{2}{3}+\sqrt{18}-2\sin(45)+12\sqrt{2}-31
Divide 17 by \frac{3}{2} by multiplying 17 by the reciprocal of \frac{3}{2}.
\frac{34}{3}+\sqrt{18}-2\sin(45)+12\sqrt{2}-31
Multiply 17 and \frac{2}{3} to get \frac{34}{3}.
\frac{34}{3}+3\sqrt{2}-2\sin(45)+12\sqrt{2}-31
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{34}{3}+3\sqrt{2}-2\times \frac{\sqrt{2}}{2}+12\sqrt{2}-31
Get the value of \sin(45) from trigonometric values table.
\frac{34}{3}+3\sqrt{2}-\sqrt{2}+12\sqrt{2}-31
Cancel out 2 and 2.
\frac{34}{3}+2\sqrt{2}+12\sqrt{2}-31
Combine 3\sqrt{2} and -\sqrt{2} to get 2\sqrt{2}.
\frac{34}{3}+14\sqrt{2}-31
Combine 2\sqrt{2} and 12\sqrt{2} to get 14\sqrt{2}.
-\frac{59}{3}+14\sqrt{2}
Subtract 31 from \frac{34}{3} to get -\frac{59}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}