Factor
\left(1-2x\right)\left(2x-7\right)
Evaluate
\left(1-2x\right)\left(2x-7\right)
Graph
Share
Copied to clipboard
-4x^{2}+16x-7
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=16 ab=-4\left(-7\right)=28
Factor the expression by grouping. First, the expression needs to be rewritten as -4x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
1,28 2,14 4,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 28.
1+28=29 2+14=16 4+7=11
Calculate the sum for each pair.
a=14 b=2
The solution is the pair that gives sum 16.
\left(-4x^{2}+14x\right)+\left(2x-7\right)
Rewrite -4x^{2}+16x-7 as \left(-4x^{2}+14x\right)+\left(2x-7\right).
-2x\left(2x-7\right)+2x-7
Factor out -2x in -4x^{2}+14x.
\left(2x-7\right)\left(-2x+1\right)
Factor out common term 2x-7 by using distributive property.
-4x^{2}+16x-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\left(-4\right)\left(-7\right)}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\left(-4\right)\left(-7\right)}}{2\left(-4\right)}
Square 16.
x=\frac{-16±\sqrt{256+16\left(-7\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-16±\sqrt{256-112}}{2\left(-4\right)}
Multiply 16 times -7.
x=\frac{-16±\sqrt{144}}{2\left(-4\right)}
Add 256 to -112.
x=\frac{-16±12}{2\left(-4\right)}
Take the square root of 144.
x=\frac{-16±12}{-8}
Multiply 2 times -4.
x=-\frac{4}{-8}
Now solve the equation x=\frac{-16±12}{-8} when ± is plus. Add -16 to 12.
x=\frac{1}{2}
Reduce the fraction \frac{-4}{-8} to lowest terms by extracting and canceling out 4.
x=-\frac{28}{-8}
Now solve the equation x=\frac{-16±12}{-8} when ± is minus. Subtract 12 from -16.
x=\frac{7}{2}
Reduce the fraction \frac{-28}{-8} to lowest terms by extracting and canceling out 4.
-4x^{2}+16x-7=-4\left(x-\frac{1}{2}\right)\left(x-\frac{7}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and \frac{7}{2} for x_{2}.
-4x^{2}+16x-7=-4\times \frac{-2x+1}{-2}\left(x-\frac{7}{2}\right)
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+16x-7=-4\times \frac{-2x+1}{-2}\times \frac{-2x+7}{-2}
Subtract \frac{7}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+16x-7=-4\times \frac{\left(-2x+1\right)\left(-2x+7\right)}{-2\left(-2\right)}
Multiply \frac{-2x+1}{-2} times \frac{-2x+7}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-4x^{2}+16x-7=-4\times \frac{\left(-2x+1\right)\left(-2x+7\right)}{4}
Multiply -2 times -2.
-4x^{2}+16x-7=-\left(-2x+1\right)\left(-2x+7\right)
Cancel out 4, the greatest common factor in -4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}