Solve for x
x<\frac{3}{5}
Graph
Share
Copied to clipboard
16x-9+x<2-\frac{4}{3}x
Subtract 5 from -4 to get -9.
17x-9<2-\frac{4}{3}x
Combine 16x and x to get 17x.
17x-9+\frac{4}{3}x<2
Add \frac{4}{3}x to both sides.
\frac{55}{3}x-9<2
Combine 17x and \frac{4}{3}x to get \frac{55}{3}x.
\frac{55}{3}x<2+9
Add 9 to both sides.
\frac{55}{3}x<11
Add 2 and 9 to get 11.
x<11\times \frac{3}{55}
Multiply both sides by \frac{3}{55}, the reciprocal of \frac{55}{3}. Since \frac{55}{3} is positive, the inequality direction remains the same.
x<\frac{11\times 3}{55}
Express 11\times \frac{3}{55} as a single fraction.
x<\frac{33}{55}
Multiply 11 and 3 to get 33.
x<\frac{3}{5}
Reduce the fraction \frac{33}{55} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}