Evaluate
2\left(x-1\right)\left(x+12\right)
Factor
2\left(x-1\right)\left(x+12\right)
Graph
Share
Copied to clipboard
16x-28+6x^{2}-6-4x^{2}+6x+10
Subtract 12 from -16 to get -28.
16x-34+6x^{2}-4x^{2}+6x+10
Subtract 6 from -28 to get -34.
16x-34+2x^{2}+6x+10
Combine 6x^{2} and -4x^{2} to get 2x^{2}.
22x-34+2x^{2}+10
Combine 16x and 6x to get 22x.
22x-24+2x^{2}
Add -34 and 10 to get -24.
2\left(11x-12+x^{2}\right)
Factor out 2.
x^{2}+11x-12
Consider 8x-8+3x^{2}-6-3-2x^{2}+3x+5. Multiply and combine like terms.
a+b=11 ab=1\left(-12\right)=-12
Consider x^{2}+11x-12. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-1 b=12
The solution is the pair that gives sum 11.
\left(x^{2}-x\right)+\left(12x-12\right)
Rewrite x^{2}+11x-12 as \left(x^{2}-x\right)+\left(12x-12\right).
x\left(x-1\right)+12\left(x-1\right)
Factor out x in the first and 12 in the second group.
\left(x-1\right)\left(x+12\right)
Factor out common term x-1 by using distributive property.
2\left(x-1\right)\left(x+12\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}