Evaluate
13
Factor
13
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)169}\\\end{array}
Use the 1^{st} digit 1 from dividend 169
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)169}\\\end{array}
Since 1 is less than 13, use the next digit 6 from dividend 169 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)169}\\\end{array}
Use the 2^{nd} digit 6 from dividend 169
\begin{array}{l}\phantom{13)}01\phantom{4}\\13\overline{)169}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}3\\\end{array}
Find closest multiple of 13 to 16. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 16 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{13)}01\phantom{5}\\13\overline{)169}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}39\\\end{array}
Use the 3^{rd} digit 9 from dividend 169
\begin{array}{l}\phantom{13)}013\phantom{6}\\13\overline{)169}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}39\\\phantom{13)}\underline{\phantom{9}39\phantom{}}\\\phantom{13)999}0\\\end{array}
Find closest multiple of 13 to 39. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 39 to get reminder 0. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }0
Since 0 is less than 13, stop the division. The reminder is 0. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}