Evaluate
\frac{352}{3}\approx 117.333333333
Factor
\frac{2 ^ {5} \cdot 11}{3} = 117\frac{1}{3} = 117.33333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{144)}\phantom{1}\\144\overline{)16896}\\\end{array}
Use the 1^{st} digit 1 from dividend 16896
\begin{array}{l}\phantom{144)}0\phantom{2}\\144\overline{)16896}\\\end{array}
Since 1 is less than 144, use the next digit 6 from dividend 16896 and add 0 to the quotient
\begin{array}{l}\phantom{144)}0\phantom{3}\\144\overline{)16896}\\\end{array}
Use the 2^{nd} digit 6 from dividend 16896
\begin{array}{l}\phantom{144)}00\phantom{4}\\144\overline{)16896}\\\end{array}
Since 16 is less than 144, use the next digit 8 from dividend 16896 and add 0 to the quotient
\begin{array}{l}\phantom{144)}00\phantom{5}\\144\overline{)16896}\\\end{array}
Use the 3^{rd} digit 8 from dividend 16896
\begin{array}{l}\phantom{144)}001\phantom{6}\\144\overline{)16896}\\\phantom{144)}\underline{\phantom{}144\phantom{99}}\\\phantom{144)9}24\\\end{array}
Find closest multiple of 144 to 168. We see that 1 \times 144 = 144 is the nearest. Now subtract 144 from 168 to get reminder 24. Add 1 to quotient.
\begin{array}{l}\phantom{144)}001\phantom{7}\\144\overline{)16896}\\\phantom{144)}\underline{\phantom{}144\phantom{99}}\\\phantom{144)9}249\\\end{array}
Use the 4^{th} digit 9 from dividend 16896
\begin{array}{l}\phantom{144)}0011\phantom{8}\\144\overline{)16896}\\\phantom{144)}\underline{\phantom{}144\phantom{99}}\\\phantom{144)9}249\\\phantom{144)}\underline{\phantom{9}144\phantom{9}}\\\phantom{144)9}105\\\end{array}
Find closest multiple of 144 to 249. We see that 1 \times 144 = 144 is the nearest. Now subtract 144 from 249 to get reminder 105. Add 1 to quotient.
\begin{array}{l}\phantom{144)}0011\phantom{9}\\144\overline{)16896}\\\phantom{144)}\underline{\phantom{}144\phantom{99}}\\\phantom{144)9}249\\\phantom{144)}\underline{\phantom{9}144\phantom{9}}\\\phantom{144)9}1056\\\end{array}
Use the 5^{th} digit 6 from dividend 16896
\begin{array}{l}\phantom{144)}00117\phantom{10}\\144\overline{)16896}\\\phantom{144)}\underline{\phantom{}144\phantom{99}}\\\phantom{144)9}249\\\phantom{144)}\underline{\phantom{9}144\phantom{9}}\\\phantom{144)9}1056\\\phantom{144)}\underline{\phantom{9}1008\phantom{}}\\\phantom{144)999}48\\\end{array}
Find closest multiple of 144 to 1056. We see that 7 \times 144 = 1008 is the nearest. Now subtract 1008 from 1056 to get reminder 48. Add 7 to quotient.
\text{Quotient: }117 \text{Reminder: }48
Since 48 is less than 144, stop the division. The reminder is 48. The topmost line 00117 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 117.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}