Evaluate
\frac{28}{3}\approx 9.333333333
Factor
\frac{2 ^ {2} \cdot 7}{3} = 9\frac{1}{3} = 9.333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)1680}\\\end{array}
Use the 1^{st} digit 1 from dividend 1680
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)1680}\\\end{array}
Since 1 is less than 180, use the next digit 6 from dividend 1680 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)1680}\\\end{array}
Use the 2^{nd} digit 6 from dividend 1680
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)1680}\\\end{array}
Since 16 is less than 180, use the next digit 8 from dividend 1680 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)1680}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1680
\begin{array}{l}\phantom{180)}000\phantom{6}\\180\overline{)1680}\\\end{array}
Since 168 is less than 180, use the next digit 0 from dividend 1680 and add 0 to the quotient
\begin{array}{l}\phantom{180)}000\phantom{7}\\180\overline{)1680}\\\end{array}
Use the 4^{th} digit 0 from dividend 1680
\begin{array}{l}\phantom{180)}0009\phantom{8}\\180\overline{)1680}\\\phantom{180)}\underline{\phantom{}1620\phantom{}}\\\phantom{180)99}60\\\end{array}
Find closest multiple of 180 to 1680. We see that 9 \times 180 = 1620 is the nearest. Now subtract 1620 from 1680 to get reminder 60. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }60
Since 60 is less than 180, stop the division. The reminder is 60. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}