Solve for c (complex solution)
\left\{\begin{matrix}c=\frac{x^{2}}{m\left(108m-23x\right)}\text{, }&m\neq \frac{23x}{108}\text{ and }m\neq 0\\c\in \mathrm{C}\text{, }&x=0\text{ and }m=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{x^{2}}{m\left(108m-23x\right)}\text{, }&m\neq \frac{23x}{108}\text{ and }m\neq 0\\c\in \mathrm{R}\text{, }&x=0\text{ and }m=0\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{\sqrt{c\left(529c+432\right)x^{2}}+23cx}{216c}\text{; }m=\frac{-\sqrt{c\left(529c+432\right)x^{2}}+23cx}{216c}\text{, }&c\neq 0\\m\in \mathrm{C}\text{, }&c=0\text{ and }x=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{x\left(\sqrt{c\left(529c+432\right)}+23c\right)}{216c}\text{; }m=\frac{x\left(-\sqrt{c\left(529c+432\right)}+23c\right)}{216c}\text{, }&c>0\text{ or }c\leq -\frac{432}{529}\\m=0\text{, }&x=0\\m\in \mathrm{R}\text{, }&c=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
108cm^{2}=23cmx+x^{2}
Combine 168cm^{2} and -60cm^{2} to get 108cm^{2}.
108cm^{2}-23cmx=x^{2}
Subtract 23cmx from both sides.
\left(108m^{2}-23mx\right)c=x^{2}
Combine all terms containing c.
\frac{\left(108m^{2}-23mx\right)c}{108m^{2}-23mx}=\frac{x^{2}}{108m^{2}-23mx}
Divide both sides by -23xm+108m^{2}.
c=\frac{x^{2}}{108m^{2}-23mx}
Dividing by -23xm+108m^{2} undoes the multiplication by -23xm+108m^{2}.
c=\frac{x^{2}}{m\left(108m-23x\right)}
Divide x^{2} by -23xm+108m^{2}.
108cm^{2}=23cmx+x^{2}
Combine 168cm^{2} and -60cm^{2} to get 108cm^{2}.
108cm^{2}-23cmx=x^{2}
Subtract 23cmx from both sides.
\left(108m^{2}-23mx\right)c=x^{2}
Combine all terms containing c.
\frac{\left(108m^{2}-23mx\right)c}{108m^{2}-23mx}=\frac{x^{2}}{108m^{2}-23mx}
Divide both sides by -23xm+108m^{2}.
c=\frac{x^{2}}{108m^{2}-23mx}
Dividing by -23xm+108m^{2} undoes the multiplication by -23xm+108m^{2}.
c=\frac{x^{2}}{m\left(108m-23x\right)}
Divide x^{2} by -23xm+108m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}