Evaluate
\frac{21}{10}=2.1
Factor
\frac{3 \cdot 7}{2 \cdot 5} = 2\frac{1}{10} = 2.1
Share
Copied to clipboard
\begin{array}{l}\phantom{80)}\phantom{1}\\80\overline{)168}\\\end{array}
Use the 1^{st} digit 1 from dividend 168
\begin{array}{l}\phantom{80)}0\phantom{2}\\80\overline{)168}\\\end{array}
Since 1 is less than 80, use the next digit 6 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{80)}0\phantom{3}\\80\overline{)168}\\\end{array}
Use the 2^{nd} digit 6 from dividend 168
\begin{array}{l}\phantom{80)}00\phantom{4}\\80\overline{)168}\\\end{array}
Since 16 is less than 80, use the next digit 8 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{80)}00\phantom{5}\\80\overline{)168}\\\end{array}
Use the 3^{rd} digit 8 from dividend 168
\begin{array}{l}\phantom{80)}002\phantom{6}\\80\overline{)168}\\\phantom{80)}\underline{\phantom{}160\phantom{}}\\\phantom{80)99}8\\\end{array}
Find closest multiple of 80 to 168. We see that 2 \times 80 = 160 is the nearest. Now subtract 160 from 168 to get reminder 8. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }8
Since 8 is less than 80, stop the division. The reminder is 8. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}